Question: Animations not displaying

I am experimenting with rotating a group of pionts, lines cylinders etc. the only aminations that  will display are where I put the transformations directly as the point coordinates. This is very tedious. Is there a way around this problem efficiently? Attached worksheet shows problem(s). Ultimately I will have a whole group of objects to rotate.
 

restart

with(plots)

[animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d, conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, densityplot, display, dualaxisplot, fieldplot, fieldplot3d, gradplot, gradplot3d, implicitplot, implicitplot3d, inequal, interactive, interactiveparams, intersectplot, listcontplot, listcontplot3d, listdensityplot, listplot, listplot3d, loglogplot, logplot, matrixplot, multiple, odeplot, pareto, plotcompare, pointplot, pointplot3d, polarplot, polygonplot, polygonplot3d, polyhedra_supported, polyhedraplot, rootlocus, semilogplot, setcolors, setoptions, setoptions3d, shadebetween, spacecurve, sparsematrixplot, surfdata, textplot, textplot3d, tubeplot]

(1)

with(plottools)

[annulus, arc, arrow, circle, cone, cuboid, curve, cutin, cutout, cylinder, disk, dodecahedron, ellipse, ellipticArc, exportplot, extrude, getdata, hemisphere, hexahedron, homothety, hyperbola, icosahedron, importplot, line, octahedron, parallelepiped, pieslice, point, polygon, prism, project, rectangle, reflect, rotate, scale, sector, semitorus, sphere, stellate, tetrahedron, torus, transform, translate]

(2)

``

``

``

a1 := proc (t) options operator, arrow; display(line([0, 0, 0], [10*sin(t), 0, 0], colour = red), point([10*sin(t), 0, 0], colour = green, symbolsize = 50, symbol = solidsphere), line([0, 0, 0], [0, 10*sin(t+1.6), 0], colour = orange), point([0, 10*sin(t+1.6), 0], colour = green, symbolsize = 40, symbol = solidsphere), line([0, 0, 0], [0, 0, 10*sin(t+.5)^2], colour = yellow), point([0, 0, 10*sin(t+.5)^2], colour = green, symbolsize = 30, symbol = solidsphere)) end proc

animate(a1, [t], t = 0 .. 2*Pi, frames = 100)

 

c1 := Vector(3, [1, -.2, 0]):

c2 := Vector(3, [-1, -.2, 0]):

c3 := Vector(3, [0, 1, 0]):

c4 := Vector(3, [1, -.2, 0]):

c5 := Vector(3, [-1, -.2, 0]):

c6 := Vector(3, [0, 1, 0]):

c7 := Vector(3, [.5, 0, 0]):

c8 := Vector(3, [0, .5, 0]):

c9 := Vector(3, [0, 0, .5]):

c := [seq(c || n, n = 1 .. 9)]

[Vector[column](%id = 18446744074349586662), Vector[column](%id = 18446744074349586782), Vector[column](%id = 18446744074349586902), Vector[column](%id = 18446744074349587022), Vector[column](%id = 18446744074349587142), Vector[column](%id = 18446744074349587382), Vector[column](%id = 18446744074349587502), Vector[column](%id = 18446744074349587622), Vector[column](%id = 18446744074349587742)]

(3)

Rot := Matrix([[cos(w*t), -sin(w*t), 0], [sin(w*t), cos(w*t), 0], [0, 0, 1]])

Matrix(%id = 18446744074349582806)

(4)

d := seq(Rot.c[n], n = 1 .. 9)

Vector[column](%id = 18446744074349577870), Vector[column](%id = 18446744074349577990), Vector[column](%id = 18446744074349578110), Vector[column](%id = 18446744074349578230), Vector[column](%id = 18446744074349578350), Vector[column](%id = 18446744074349578590), Vector[column](%id = 18446744074349578710), Vector[column](%id = 18446744074349578830), Vector[column](%id = 18446744074349578950)

(5)

``

w := .25

.25

(6)

``

``

[d[1][1], d[1][2], d[1][3]]

[cos(.25*t)+.2*sin(.25*t), sin(.25*t)-.2*cos(.25*t), 0.]

(7)

ff1 := proc (t) options operator, arrow; plots:-display([plottools:-line([0, 0, 0], [d[1][1], d[1][2], d[1][3]], colour = red, thickness = 4)]) end proc

proc (t) options operator, arrow; plots:-display([plottools:-line([0, 0, 0], [d[1][1], d[1][2], d[1][3]], colour = red, thickness = 4)]) end proc

(8)

plots:-animate(ff1, [t], t = 0 .. 5, frames = 100)

 

 

Lend1 := [cos(w*t)+.2*sin(w*t), sin(w*t)-.2*cos(w*t), 0.]

[cos(.25*t)+.2*sin(.25*t), sin(.25*t)-.2*cos(.25*t), 0.]

(9)

ff2 := proc (t) options operator, arrow; plots:-display([plottools:-line([0, 0, 0], Lend1, colour = red, thickness = 4)]) end proc

proc (t) options operator, arrow; plots:-display([plottools:-line([0, 0, 0], Lend1, colour = red, thickness = 4)]) end proc

(10)

plots:-animate(ff2, [t], t = 0 .. 5, frames = 100)

 

``

ff3 := proc (t) options operator, arrow; plots:-display([plottools:-line([0, 0, 0], [cos(.35*t)+.2*sin(.35*t), sin(.35*t)+(-1)*.2*cos(.35*t), 0.], colour = red, thickness = 4)]) end proc

proc (t) options operator, arrow; plots:-display([plottools:-line([0, 0, 0], [cos(.35*t)+.2*sin(.35*t), sin(.35*t)-.2*cos(.35*t), 0.], colour = red, thickness = 4)]) end proc

(11)

plots:-animate(ff3, [t], t = 0 .. 5, frames = 100)

 

``


 

Download Anim_How-1.mw

restart

with(plots)

[animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d, conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, densityplot, display, dualaxisplot, fieldplot, fieldplot3d, gradplot, gradplot3d, implicitplot, implicitplot3d, inequal, interactive, interactiveparams, intersectplot, listcontplot, listcontplot3d, listdensityplot, listplot, listplot3d, loglogplot, logplot, matrixplot, multiple, odeplot, pareto, plotcompare, pointplot, pointplot3d, polarplot, polygonplot, polygonplot3d, polyhedra_supported, polyhedraplot, rootlocus, semilogplot, setcolors, setoptions, setoptions3d, shadebetween, spacecurve, sparsematrixplot, surfdata, textplot, textplot3d, tubeplot]

(1)

with(plottools)

[annulus, arc, arrow, circle, cone, cuboid, curve, cutin, cutout, cylinder, disk, dodecahedron, ellipse, ellipticArc, exportplot, extrude, getdata, hemisphere, hexahedron, homothety, hyperbola, icosahedron, importplot, line, octahedron, parallelepiped, pieslice, point, polygon, prism, project, rectangle, reflect, rotate, scale, sector, semitorus, sphere, stellate, tetrahedron, torus, transform, translate]

(2)

``

``

``

a1 := proc (t) options operator, arrow; display(line([0, 0, 0], [10*sin(t), 0, 0], colour = red), point([10*sin(t), 0, 0], colour = green, symbolsize = 50, symbol = solidsphere), line([0, 0, 0], [0, 10*sin(t+1.6), 0], colour = orange), point([0, 10*sin(t+1.6), 0], colour = green, symbolsize = 40, symbol = solidsphere), line([0, 0, 0], [0, 0, 10*sin(t+.5)^2], colour = yellow), point([0, 0, 10*sin(t+.5)^2], colour = green, symbolsize = 30, symbol = solidsphere)) end proc

animate(a1, [t], t = 0 .. 2*Pi, frames = 100)

 

c1 := Vector(3, [1, -.2, 0]):

c2 := Vector(3, [-1, -.2, 0]):

c3 := Vector(3, [0, 1, 0]):

c4 := Vector(3, [1, -.2, 0]):

c5 := Vector(3, [-1, -.2, 0]):

c6 := Vector(3, [0, 1, 0]):

c7 := Vector(3, [.5, 0, 0]):

c8 := Vector(3, [0, .5, 0]):

c9 := Vector(3, [0, 0, .5]):

c := [seq(c || n, n = 1 .. 9)]

[Vector[column](%id = 18446744074349586662), Vector[column](%id = 18446744074349586782), Vector[column](%id = 18446744074349586902), Vector[column](%id = 18446744074349587022), Vector[column](%id = 18446744074349587142), Vector[column](%id = 18446744074349587382), Vector[column](%id = 18446744074349587502), Vector[column](%id = 18446744074349587622), Vector[column](%id = 18446744074349587742)]

(3)

Rot := Matrix([[cos(w*t), -sin(w*t), 0], [sin(w*t), cos(w*t), 0], [0, 0, 1]])

Matrix(%id = 18446744074349582806)

(4)

d := seq(Rot.c[n], n = 1 .. 9)

Vector[column](%id = 18446744074349577870), Vector[column](%id = 18446744074349577990), Vector[column](%id = 18446744074349578110), Vector[column](%id = 18446744074349578230), Vector[column](%id = 18446744074349578350), Vector[column](%id = 18446744074349578590), Vector[column](%id = 18446744074349578710), Vector[column](%id = 18446744074349578830), Vector[column](%id = 18446744074349578950)

(5)

``

w := .25

.25

(6)

``

``

[d[1][1], d[1][2], d[1][3]]

[cos(.25*t)+.2*sin(.25*t), sin(.25*t)-.2*cos(.25*t), 0.]

(7)

ff1 := proc (t) options operator, arrow; plots:-display([plottools:-line([0, 0, 0], [d[1][1], d[1][2], d[1][3]], colour = red, thickness = 4)]) end proc

proc (t) options operator, arrow; plots:-display([plottools:-line([0, 0, 0], [d[1][1], d[1][2], d[1][3]], colour = red, thickness = 4)]) end proc

(8)

plots:-animate(ff1, [t], t = 0 .. 5, frames = 100)

 

 

Lend1 := [cos(w*t)+.2*sin(w*t), sin(w*t)-.2*cos(w*t), 0.]

[cos(.25*t)+.2*sin(.25*t), sin(.25*t)-.2*cos(.25*t), 0.]

(9)

ff2 := proc (t) options operator, arrow; plots:-display([plottools:-line([0, 0, 0], Lend1, colour = red, thickness = 4)]) end proc

proc (t) options operator, arrow; plots:-display([plottools:-line([0, 0, 0], Lend1, colour = red, thickness = 4)]) end proc

(10)

plots:-animate(ff2, [t], t = 0 .. 5, frames = 100)

 

``

ff3 := proc (t) options operator, arrow; plots:-display([plottools:-line([0, 0, 0], [cos(.35*t)+.2*sin(.35*t), sin(.35*t)+(-1)*.2*cos(.35*t), 0.], colour = red, thickness = 4)]) end proc

proc (t) options operator, arrow; plots:-display([plottools:-line([0, 0, 0], [cos(.35*t)+.2*sin(.35*t), sin(.35*t)-.2*cos(.35*t), 0.], colour = red, thickness = 4)]) end proc

(11)

plots:-animate(ff3, [t], t = 0 .. 5, frames = 100)

 

``


 

Download Anim_How-1.mw

Please Wait...