Question: solve z^(1+I)=1

solve(z^(1+I) = 1, z, allsolutions = true);
                      exp((1 + I) Pi _Z1)
getassumptions(_Z1);
                         {_Z1::integer}

Since this is a single-valued power function, there is only a finite number of solutions. evalc correctly gives exp(-2*Pi) for _Z1=-1.

evalf doesn't help here regardless of the level of precision, I think because it always generates a non-zero imaginary part for exp(-(1+I)*Pi):

seq(print(evalf(evalf[d]((exp((-1-I)*Pi))^(1+I)))), d = 10 .. 3010, 300);
                                             -12  
              0.001867442732 - 1.361179007 10    I
                                            -312  
             0.001867442732 - 1.674479874 10     I
                                           -610  
               1.000000000 + 2.386571217 10     I
                                           -910  
               1.000000000 + 8.502509375 10     I
                                            -1212  
             0.001867442732 - 1.646483173 10      I
                                            -1514  
             0.001867442732 - 4.556560265 10      I
                                            -1812  
             0.001867442732 - 1.287611101 10      I
                                            -2112  
             0.001867442732 - 1.072784224 10      I
                                          -2410  
              1.000000000 + 8.162729354 10      I
                                            -2713  
             0.001867442732 - 7.375390371 10      I
                                          -3010  
              1.000000000 + 1.988371005 10      I

Unrelated, but it would be nice to have a simple way to display lists/matrices with specified width and alignment.

 

Please Wait...