# Question:how to plot this?

## Question:how to plot this?

Maple 12

ode1a := diff(y1(t), t) = round(rhs(odeparm1[1][1]))*y1(t)+round(rhs(odeparm1[1][2]))*y2(t)+round(rhs(odeparm1[1][3]))*y3(t);
ode2a := diff(y2(t), t) = round(rhs(odeparm1[1][4]))*y1(t)+round(rhs(odeparm1[1][5]))*y2(t)+round(rhs(odeparm1[1][6]))*y3(t);
ode3a := diff(y3(t), t) = round(rhs(odeparm1[1][7]))*y1(t)+round(rhs(odeparm1[1][8]))*y2(t)+round(rhs(odeparm1[1][9]))*y3(t);
try
ode1a := diff(y1(t), t) = rhs(odeparm1[1][1])*y1(t)+rhs(odeparm1[1][2])*y2(t)+rhs(odeparm1[1][3])*y3(t);
ode2a := diff(y2(t), t) = rhs(odeparm1[1][4])*y1(t)+rhs(odeparm1[1][5])*y2(t)+rhs(odeparm1[1][6])*y3(t);
ode3a := diff(y3(t), t) = rhs(odeparm1[1][7])*y1(t)+rhs(odeparm1[1][8])*y2(t)+rhs(odeparm1[1][9])*y3(t);
sys := DiffEquation([ode1a, ode2a, ode3a], inputvariable = [y1(t)], outputvariable = [y2(t), y3(t)]);
sysz := ToDiscrete(sys, ts); in_t := Sine(1, 1, 0, 0);
sol := Simulate(sys, [in_t]);
try
p1 := plots[odeplot](sol, [[t, y2(t)]], t = 0 .. t_sim, numpoints = 200, color = red);
print("succeed 1 2", i)
catch:
print("error draw at ", i)
end try;
try
p1 := plots[odeplot](sol, [[t, y3(t)]], t = 0 .. t_sim, numpoints = 200, color = red);
print("succeed 1 3", i)
catch:
print("error draw at ", i)
end try
catch: print("error at ", i);
print(lastexception);
print(ode1a);
print(ode2a);
print(ode3a);
end try;
try
ode1a := diff(y1(t), t) = rhs(odeparm1[1][1])*y1(t)+rhs(odeparm1[1][2])*y2(t)+rhs(odeparm1[1][3])*y3(t);
ode2a := diff(y2(t), t) = rhs(odeparm1[1][4])*y1(t)+rhs(odeparm1[1][5])*y2(t)+rhs(odeparm1[1][6])*y3(t);
ode3a := diff(y3(t), t) = rhs(odeparm1[1][7])*y1(t)+rhs(odeparm1[1][8])*y2(t)+rhs(odeparm1[1][9])*y3(t);
sys := DiffEquation([ode1a, ode2a, ode3a], inputvariable = [y2(t)], outputvariable = [y1(t), y3(t)]);
sysz := ToDiscrete(sys, ts);
in_t := Sine(1, 1, 0, 0);
sol := Simulate(sys, [in_t]);
try
p1 := plots[odeplot](sol, [[t, y1(t)]], t = 0 .. t_sim, numpoints = 200, color = red);
print("succeed 2 1", i)
catch:
print("error draw at ", i)
end try;
try
p1 := plots[odeplot](sol, [[t, y3(t)]], t = 0 .. t_sim, numpoints = 200, color = red);
print("succeed 2 3", i)
catch:
print("error draw at ", i)
end try
catch:
print("error at ", i);
print(lastexception);
print(ode1a);
print(ode2a);
print(ode3a)
end try;
try
ode1a := diff(y1(t), t) = rhs(odeparm1[1][1])*y1(t)+rhs(odeparm1[1][2])*y2(t)+rhs(odeparm1[1][3])*y3(t);
ode2a := diff(y2(t), t) = rhs(odeparm1[1][4])*y1(t)+rhs(odeparm1[1][5])*y2(t)+rhs(odeparm1[1][6])*y3(t);
ode3a := diff(y3(t), t) = rhs(odeparm1[1][7])*y1(t)+rhs(odeparm1[1][8])*y2(t)+rhs(odeparm1[1][9])*y3(t);
sys := DiffEquation([ode1a, ode2a, ode3a], inputvariable = [y3(t)], outputvariable = [y1(t), y2(t)]);
sysz := ToDiscrete(sys, ts);
in_t := Sine(1, 1, 0, 0);
sol := Simulate(sys, [in_t]);
try
p1 := plots[odeplot](sol, [[t, y1(t)]], t = 0 .. t_sim, numpoints = 200, color = red);
print("succeed 3 1", i)
catch:
print("error draw at ", i)
end try;
try
p1 := plots[odeplot](sol, [[t, y2(t)]], t = 0 .. t_sim, numpoints = 200, color = red);
print("succeed 3 2", i)
catch:
print("error draw at ", i)
end try
catch:
print("error at ", i);
print(lastexception);
print(ode1a);
print(ode2a);
print(ode3a)
end try

diff(y1(t), t) = 1.052936200*10^5*y1(t)+70106.19000*y2(t)+35169.00000*y3(t)
diff(y2(t), t) = 70106.19000*y1(t)+71031.61000*y2(t)+35511.00000*y3(t)
diff(y3(t), t) = 35169.00000*y1(t)+35511.00000*y2(t)+36100.00000*y3(t)
"the DEs contain functions with undefined values (probably caused by a discontinuity in the input that was differentiated). As a result, the numerical solution cannot be calculated. The DE system is: %1\"",[(&DifferentialD;)/(&DifferentialD;t) y1(t)=1.052936200 10^5 y1(t)+70106.19000 y2(t)+35169.00000 ({[[0,t<0],[sin(t),otherwise]]),(&DifferentialD;)/(&DifferentialD;t) y2(t)=70106.19000 y1(t)+71031.61000 y2(t)+35511.00000 ({[[0,t<0],[sin(t),otherwise]]),{[[0,t<0],[undefined,t=0],[cos(t),0<t]]=35169.00000 y1(t)+35511.00000 y2(t)+36100.00000 ({[[0,t<0],[sin(t),otherwise]]),y2(0)=0,y1(0)=0]

it has error when plot
﻿