Question: Complex solutions

Hi

I d like to limit my solution to a real (non complex) solution
There should be a simple solution to my calculation but maple can t process the solutions in one of my "solve" commands.

How can do I tell maple to limit itself to one
 

NULL

restart

with(Student[Calculus1]):


#geometry [mm]

b := 250:

h := 720:

ds := 70:

d := h-ds:

As := 3000:


#concrete [MPa]

fck := 30:

fcm := fck+8;

38

(1)

Ecm := 33000;

33000

(2)

`ϵc1` := 2.2*(1/1000);

0.2200000000e-2

(3)

eta := `ϵc`/`ϵc1`;

454.5454545*`ϵc`

(4)

Ec1 := fck/`ϵc1`;

13636.36364

(5)

k := 1.05*Ecm/Ec1;

2.540999999

(6)

sigma := fcm*(-eta^2+eta*k)/(1+(k-2)*eta);

38*(-206611.5702*`ϵc`^2+1154.999999*`ϵc`)/(1+245.9090904*`ϵc`)

(7)


#steel [MPa]

Es := 200000:

fsy := 400:

fsu := 600:

`ϵy` := fsy/Es;

1/500

(8)

`ϵsh` := 0.9e-2:

`ϵsu` := 0.75e-1:

P := 4:

`ϵs` := `ϵcm`*(d-c)/c;

`ϵcm`*(650-c)/c

(9)

i := 1;

1

(10)

for `ϵcm` from .1*(1/1000) by .1*(1/1000) to 10*(1/1000) do `ϵs` := `ϵcm`*(d-c)/c; T[1] := `ϵs`*Es*As; T[2] := fsy*As; T[3] := (fsu+(fsy-fsu)*((`ϵsu`-`ϵs`)/(`ϵsu`-`ϵsh`))^P)*As; C := b*c*(int(sigma, `ϵc` = 0 .. `ϵcm`))/`ϵcm`; eq[1] := T[1] = C; `ϵl`[1] := `ϵy`; eq[2] := T[2] = C; `ϵl`[2] := `ϵsh`; eq[3] := T[3] = C; cc := max(solve(eq[1], c)); `ϵss` := subs(c = cc, `ϵs`); Ta := subs(c = cc, T[1]); if `ϵss` >= `ϵl`[1] then cc := max(solve(eq[2], c)); Ta := subs(c = cc, T[2]); `ϵss` := subs(c = cc, `ϵs`) end if; if `ϵss` >= `ϵl`[2] then cc := max(`assuming`([solve(eq[3], c, useassumptions)], [c::real])); Ta := subs(c = cc, T[3]); `ϵss` := subs(c = cc, `ϵs`) end if; M[i] := b*cc^2*fcm*(int(sigma*`ϵc`, `ϵc` = 0 .. `ϵcm`))*10^(-6)/`ϵcm`^2+T*(d-cc)*10^(-6); phi[i] := `ϵcm`/cc; cd[i] := cc/d; print(`ϵcm`, `ϵss`, Ta/As); i := i+1 end do

0.1000000000e-3, 0.1955232439e-3, 39.10464877

 

0.2000000000e-3, 0.3845102290e-3, 76.90204580

 

0.3000000000e-3, 0.5671741821e-3, 113.4348364

 

0.4000000000e-3, 0.7437144096e-3, 148.7428819

 

0.5000000000e-3, 0.9143174400e-3, 182.8634880

 

0.6000000000e-3, 0.1079158043e-2, 215.8316087

 

0.7000000000e-3, 0.1238400148e-2, 247.6800297

 

0.8000000000e-3, 0.1392197667e-2, 278.4395334

 

0.9000000000e-3, 0.1540695238e-2, 308.1390476

 

0.1000000000e-2, 0.1684028897e-2, 336.8057793

 

0.1100000000e-2, 0.1822326682e-2, 364.4653363

 

0.1200000000e-2, 0.1955709188e-2, 391.1418377

 

0.1300000000e-2, 0.2226921078e-2, 400

 

0.1400000000e-2, 0.2583745185e-2, 400

 

0.1500000000e-2, 0.2954159196e-2, 400

 

0.1600000000e-2, 0.3336139462e-2, 400

 

0.1700000000e-2, 0.3727768551e-2, 400

 

0.1800000000e-2, 0.4127227927e-2, 400

 

0.1900000000e-2, 0.4532791280e-2, 400

 

0.2000000000e-2, 0.4942818378e-2, 400

 

0.2100000000e-2, 0.5355749454e-2, 400

 

0.2200000000e-2, 0.5770100024e-2, 400

 

0.2300000000e-2, 0.6184456101e-2, 400

 

0.2400000000e-2, 0.6597469817e-2, 400

 

0.2500000000e-2, 0.7007855358e-2, 400

 

0.2600000000e-2, 0.7414385220e-2, 400

 

0.2700000000e-2, 0.7815886744e-2, 400

 

0.2800000000e-2, 0.8211238846e-2, 400

 

0.2900000000e-2, 0.8599369121e-2, 400

 

0.3000000000e-2, 0.8979250971e-2, 400

 

Error, complex argument to max/min

 

`ϵcm` := 0.35e-2; `ϵs` := `ϵcm`*(d-c)/c; T[1] := `ϵs`*Es*As; T[2] := fsy*As; T[3] := (fsu+(fsy-fsu)*((`ϵsu`-`ϵs`)/(`ϵsu`-`ϵsh`))^P)*As; C := b*c*(int(sigma, `ϵc` = 0 .. `ϵcm`))/`ϵcm`; eq[1] := T[1] = C; `ϵl`[1] := `ϵy`; eq[2] := T[2] = C; `ϵl`[2] := `ϵsh`; eq[3] := T[3] = C; cc1 := max(solve(eq[1], c)); `ϵss1` := subs(c = cc, `ϵs`); Ta1 := subs(c = cc, T[1]); cc2 := max(solve(eq[2], c)); `ϵss1` := subs(c = cc, `ϵs`); Ta2 := subs(c = cc, T[2]); cc3 := max(solve(eq[3], c)); `ϵss3` := subs(c = cc, `ϵs`); Ta3 := subs(c = cc, T[3]); M[i] := b*cc^2*fcm*(int(sigma*`ϵc`, `ϵc` = 0 .. `ϵcm`))*10^(-6)/`ϵcm`^2+T*(d-cc)*10^(-6); phi[i] := `ϵcm`/cc; cd[i] := cc/d; print(`ϵcm`, `ϵss`, Ta/As); i := i+1

7501.663386*c

 

308.9753080

 

0.1055633997e-1

 

6333803.979

 

159.9645223

 

0.1055633997e-1

 

1200000

 

Error, complex argument to max/min

 

0.1055633997e-1

 

1254623.652

 

0.35e-2, 0.9349901112e-2, 400

(11)

``

``

``

``

``

NULL

NULL

``

``

``

``

``

``

``

``

``

``

``

``

``

NULL

``

``

``

``

``

``

``

``

``


 

Download mathias.mw

simple non complex solutions ?

Please Wait...