Question: how to relate Pi/3 with schrodinger equation?

with(linalg):
A := matrix([[1,0],[0,1]]);
AA := exponential(t*A);

A := matrix([[-i/h,0],[0,-i/h]]);
AA := exponential(t*A);
Error, (in evalf/matrixexp) cannot determine if this expression is true or false: 0.9482523555e34*abs(t*i) < 1

arctan(sqrt(3)/2/(1/2));
cos(Pi/3) + i*sin(Pi/3);

exp(i*Pi/3);

cos(Pi/3) + i*sin(Pi/3) - exp(i*Pi/3);

with(ScientificConstants):
Constant(hbar);
h := evalf(%);
dsolve(diff(s(t),t) + i/h*s(t)=0,s(t));
dsolve(diff(s(t),t) + i*s(t)=0,s(t));
 

after solve differential equation, there is no Pi/3, 

can s(t) be a matrix ?

where do Pi/3 come from?

then i try Ket

with(Physics);
K1 := Ket(&psi;t);
dsolve(diff(K1,t) + i/h*K1=0,K1);

Error, invalid neutral operator;
Ket is matrix or complex number ?

and how to solve?

Please Wait...