# Question:Ploting real and complex part of a function

## Question:Ploting real and complex part of a function

Maple 2017

Dear users,

I have an issue with finding real part of a complex variable function. In calculating the real part I see two arguments and the plot is not smooth. How to get real part correct. The worksheet is attached.

 > ##Toya complex variable method
 >
 > restart;
 > stress_c:=-(1+1/nu_c)*k*p2*zeta_c/2;
 (1.1)
 > p2:=(c0_c-d_1c/k)*(z-a*(cos(alpha)+2*lambda*sin(alpha)))+(1-k)/k*a*(N_infty-T_infty)*exp(2*I*phi_c+2*lambda*(alpha-Pi))*((a*(cos(alpha)-2*lambda*sin(alpha)))/z-a^2/z^2)
 (1.2)
 >
 >
 (1.3)
 >
 >
 (1.4)
 >
 (1.5)
 >
 (1.6)
 >
 (1.7)
 >
 >
 (1.8)
 >
 (1.9)
 >
 >
 (1.10)
 > G_c:=(0.5*(T_infty+N_infty)*(1-(cos(alpha)+2*lambda*sin(alpha))*exp(2*lambda*(evalf(Pi)-alpha)))-0.5*(1-k)*(1+4*lambda^2)*(N_infty-T_infty)*(sin(alpha))^2*cos(2*phi_c))/(2-k-k*(cos(alpha)+2*lambda*sin(alpha))*exp(evalf(2*lambda*(Pi-alpha))));
 (1.11)
 > H_c:=0.5*(1-k)*(1+4*lambda^2)*(-T_infty+N_infty)*(sin(alpha))^2*sin(2*phi_c)/(k*(1+(cos(alpha)+2*lambda*sin(alpha))*exp(2*lambda*(evalf(Pi)-alpha))));
 (1.12)
 > ##Input
 > alpha:=evalf(Pi/6)
 (1.13)
 > phi_c:=alpha;
 (1.14)
 > N_infty:=0;
 (1.15)
 > T_infty:=1;
 (1.16)
 > a:=1;nu2:=22/100;kappa2:=3-4*nu2;nu:=35/100;kappa:=3-4*nu;mu:=239/100;mu2:=442/10;
 (1.17)
 >
 > stress_c
 (1.18)
 >
 >
 (1.19)
 >