Hi everybody

I have some problems with fsolve(complex equation). It results some answers (I expect answers in the range 10e6 to 10e11) but substitution them into the main equation leads to numbers of order 10e-8 to 10e8. I know fsolve solves equation numerically, so 10e-8 t0 10e-6 is acceptable, but what about 10e7? How can I handle this problem? I have an Array of this kind of equations to solve and then analyze answers.

How can I increase the speed of calculations? I try to do some parallelization (thanks dohashi for posts about parallel programming) but I couldn't do. I upload the code below.

Thanks.

EQ1 := 1.780876811*10^90*(-(1.857495893*10^(-32)*I)*(-(.9215096529*(-1.077177489*10^(-57)*omega^2+1.251444314*10^(-43)-7.423792254*10^(-74)*omega^4))*(1.042248387*10^(-7)*omega-3.773917830*10^(-22)*omega^3)+1.022012860*10^(-43)-9.365146438*10^(-58)*omega^2+1.290731820*10^(-74)*omega^4+8.072440803*10^(-47)*omega^2*(7.038725244*10^(-13)-9.109383000*10^(-28)*omega^2))*exp(-.9800000000*I-4.717786244*10^(-17)*omega^2)-(1.857495893*10^(-32)*I)*((.9215096529*(5.411991727*10^(-58)*omega^2-1.370413754*10^(-43)+1.063387455*10^(-73)*omega^4))*(1.042248387*10^(-7)*omega-3.773917830*10^(-22)*omega^3)-1.119171234*10^(-43)+3.850718130*10^(-58)*omega^2+1.279097989*10^(-74)*omega^4+1.703871878*10^(-48)*omega^2*(5.154059190*10^(-14)+3.036461000*10^(-28)*omega^2)+8.072440803*10^(-47)*omega^2*(7.038725244*10^(-13)+9.109383000*10^(-28)*omega^2))*exp(.9800000000*I-4.717786244*10^(-17)*omega^2)+2.054040475*10^(-31)*((1.936145393*10^(-59)+1.043762907*10^(-58)*I)*omega^2+4.297601656*10^(-46)-1.690952584*10^(-44)*I+(-1.159596547*10^(-75)+1.164619044*10^(-74)*I)*omega^4)*exp(-4.717786244*10^(-17)*omega^2)*(1.042248387*10^(-7)*omega-3.773917830*10^(-22)*omega^3)+(2.799879047*10^(-71)*I)*(-6.704964363*10^(-12)-3.118737242*10^(-28)*omega^2)*omega*exp(.9800000000*I-1.090999486*10^(-14)*omega^2)-(2.799879047*10^(-71)*I)*(8.281232388*10^(-12)+2.177273887*10^(-28)*omega^2)*omega*exp(-.9800000000*I-1.090999486*10^(-14)*omega^2)+3.476335242*10^(-51)*((.1388433141*I)*(-2.893776471*10^(-25)-1.303697368*10^(-38)*omega^2+7.808106616*10^(-55)*omega^4)+4.959435112*10^(-25)-3.098806468*10^(-39)*omega^2-3.391707726*10^(-55)*omega^4-1.314961283*10^(-30)*(-2.854029409*10^(-11)+1.827522021*10^(-27)*omega^2)*omega^2)*exp(-4.717786244*10^(-17)*omega^2)-2.814230381*10^(-37)*(9.949004410*10^(-35)*(-6.832852706*10^(-13)-1.621609260*10^(-14)*I-(2.889900216*10^(-30)*I)*omega^2-(.9082907587*I)*(8.002616800*10^(-12)-1.954522389*10^(-30)*omega^2)-(.4487255373*I)*(9.612550267*10^(-12)+9.109383000*10^(-28)*omega^2)+4.081082866*10^(-29)*omega^2)*exp(-1.090999486*10^(-14)*omega^2)-1.995292057*10^(-54)*omega)*omega)/omega^2

Test_MaplePrime971127.mw