Question: How I can differential with respect to the constant

How I can differential with respect to the constant A[m,n,r], B[m,n,r], C[m,n,r]

thanks

lagra.mw
 

e := mu*(((cosh(eta)-cos(theta))/a)^2*(diff(`U__η`(eta, `ϕ`, theta), eta, eta))+(1-cosh(eta)*cos(theta))*(cosh(eta)-cos(theta))*(diff(`U__η`(eta, `ϕ`, theta), eta))/(a^2*sinh(eta))+2*sinh(eta)*(cosh(eta)-cos(theta))*(diff(`U__θ`(eta, `ϕ`, theta), theta))/a^2)

T := proc () options operator, arrow; rho*omega^2*(int(int(int((u(eta, `ϕ`, theta)^2+v(eta, `ϕ`, theta)^2+w(eta, `ϕ`, theta)^2)*a^3*sinh(eta)/(cosh(eta)-cos(`ϕ`))^3, theta = a .. b), eta = c .. d), `ϕ` = e .. f)) end proc

u__trial := proc (eta, `ϕ`, theta, M, N) options operator, arrow; sum(sum(sum(A[m, n, r]*u[m, n, r](eta, `ϕ`, theta), n = 1 .. N), m = 1 .. M), r = 1 .. R) end proc; v__trial := proc (eta, `ϕ`, theta, M, N) options operator, arrow; sum(sum(sum(B[m, n, r]*v[m, n, r](eta, `ϕ`, theta), n = 1 .. N), m = 1 .. M), r = 1 .. R) end proc; w__trial := proc (eta, `ϕ`, theta, M, N) options operator, arrow; sum(sum(sum(C[m, n, r]*w[m, n, r](eta, `ϕ`, theta), n = 1 .. N), m = 1 .. M), r = 1 .. R) end proc

proc (eta, varphi, theta, M, N) options operator, arrow; sum(sum(sum(C[m, n, r]*w[m, n, r](eta, varphi, theta), n = 1 .. N), m = 1 .. M), r = 1 .. R) end proc

(1)

L := e-T()

"(∂)/(∂ A[m,n,r])L"

``

``

``

``

``

``

``

``


 

Download lagra.mw

 

Please Wait...