Question: How I can calculate integral?

How I can calculate integral?

Thanks

int.mw


 

"restart;    f[1,1](r,theta,phi):=r^4 sin(6 theta) sin(3 phi):    L(r, theta,phi):=(2.784615385 10^10 ((∂)^2)/(∂r^2) `f__11`(r,theta,phi)+(2.784615385 10^10 (2+2 r cos(theta)) ((∂)/(∂r) `f__11`(r,theta,phi)))/(r (2+r cos(theta)))-(0.1175000000 (((∂)^4)/(∂theta^4) `f__11`(r,theta,phi)))/(r^4)-(0.1175000000 (((∂)^4)/(∂phi^4) `f__11`(r,theta,phi)))/((2+r cos(theta))^4)-(0.1175000000 (((∂)^4)/(∂phi^2∂r^2) `f__11`(r,theta,phi)))/((2+r cos(theta))^2)-(0.1175000000 (((∂)^4)/(∂r^2∂theta^2) `f__11`(r,theta,phi)))/(r^2)-(0.2350000000 (((∂)^4)/(∂phi^2∂theta^2) `f__11`(r,theta,phi)))/(r^2 (2+r cos(theta))^2)+(0.1175000000 ((cos(theta))^2 r^2+4 (cos(theta))^2 r^4+16 cos(theta) r^3-4+17 r^2) (((∂)^2)/(∂theta^2) `f__11`(r,theta,phi)))/((2+r cos(theta))^2 r^4)+(0.1175000000 (2 (cos(theta))^2 r^2+4 (cos(theta))^2 r^4+16 cos(theta) r^3+4+12 r^2) (((∂)^2)/(∂phi^2) `f__11`(r,theta,phi)))/(r^2 (2+r cos(theta))^4)-(2.784615385 10^10 (2 (cos(theta))^2 r^2+4 r cos(theta)+4) `f__11`(r,theta,phi))/(r^2 (2+r cos(theta))^2)+(0.2350000000 (((∂)^3)/(∂r∂theta^2) `f__11`(r,theta,phi)))/(r^3 (2+r cos(theta)))-(0.2350000000 (((∂)^3)/(∂phi^2∂r) `f__11`(r,theta,phi)))/(r (2+r cos(theta))^3)+(0.2350000000 sin(theta) (((∂)^3)/(∂theta^3) `f__11`(r,theta,phi)))/(r^3 (2+r cos(theta)))-(0.2350000000 sin(theta) (((∂)^3)/(∂phi^2∂theta) `f__11`(r,theta,phi)))/(r (2+r cos(theta))^3)+(0.1175000000 sin(theta) (((∂)^3)/(∂r^2∂theta) `f__11`(r,theta,phi)))/(r (2+r cos(theta)))-(0.1175000000 (2 r cos(theta)+3) sin(theta) (2 r cos(theta)+5) ((∂)/(∂theta) `f__11`(r,theta,phi)))/(r (2+r cos(theta))^3)) r^4 sin(6 theta) sin(3 phi):"

with(Student[Calculus1]); K[rr, s] := evalf(ApproximateInt(L(r, theta, phi), r = .2 .. 1, method = simpson)); KK[rr, s] := evalf(ApproximateInt(K[rr, s], theta = 0 .. 2*Pi, method = simpson)); k2 := evalf(ApproximateInt(KK[rr, s], phi = 0 .. 2*Pi, method = simpson))

``


 

Download int.mw

Please Wait...