Question: Checking realtionships between solutions of differential equations

I have a system of ODEs with parameters, p[i], and variables, x[i].

f := [
-p[1]*x[1]^2+x[2],
-2*p[1]^2*x[1]^3+2*p[1]*x[1]*x[2]+x[1]+1
];

associated with the innitial conditions:
[x[1](0) = p[2], x[2](0) = p[3]].

I have sets of parameters that i am interested in

[p[1] = 1, p[2] = 2, p[3] = 3]
[p[1] = 2, p[2] = 2, p[3] = 7]
[p[1] = 3, p[2] = 2, p[3] = 11]
[p[1] = 4, p[2] = 2, p[3] = 15]
[p[1] = 5, p[2] = 2, p[3] = 19]
[p[1] = 6, p[2] = 2, p[3] = 23]
and so on.


The solutions for these equations appear to be anisotropic scalings of each other.

i.e.

/xh[1]\ =/1 0\ /x[1]\      
\xh[2]/   \0 q/ \x[2]/

where x is the variable for one parameter vector and xh is the variable for another; and q is a nuimber I am interesting in working out (and think may be p[1]).

how do you work out q?

[this is in fact a complicated way of asking when I numerically integrate an ODE on maple how do i get access to the sequence of numbers in the result]

Please Wait...