Question: should result of simplification depend of original form of expressions?

Maple 2019.2.

These two expressions are mathematically equivalent:

But simplify(expr1-expr2) does not give zero where simplify(convert(expr1,trig)-expr2) does.

Is this normal behavior or can be expected sometimes? As a user I would have expected Maple internally to figure all of this itself. Compare to Mathematica:

Is there a different command in Maple that will show mathematical equivalence of two expressions to try other than simplify?

Thanks
 

restart;

expr1:=(-exp(n*Pi*(2*b - y)/a) + exp(n*Pi*y/a))/((exp(2*n*Pi*b/a) - 1)):
expr2:= sinh(n*Pi/a*y)/tanh(n*Pi/a*b)-cosh(n*Pi/a*y):
simplify(expr1-expr2);

(-sinh(n*Pi*b/a)*exp(n*Pi*(2*b-y)/a)+(-sinh(n*Pi*y/a)*cosh(n*Pi*b/a)+cosh(n*Pi*y/a)*sinh(n*Pi*b/a))*exp(2*n*Pi*b/a)+(exp(n*Pi*y/a)-cosh(n*Pi*y/a))*sinh(n*Pi*b/a)+sinh(n*Pi*y/a)*cosh(n*Pi*b/a))/((exp(2*n*Pi*b/a)-1)*sinh(n*Pi*b/a))

simplify(convert(expr1,trig)-expr2);

0

 


 

Download q.mw

 

Please Wait...