Question: phase portrait of ODE system

I try to use phaseportrait to get the phase portrait of the following ode system, why it does not give the plot or the error reminding?


 

with(LinearAlgebra)

phaseportrait([diff(x(t), t) = -((y(t)^2*x(t)+x(t)^3+y(t)-x(t))*sqrt((y(t)^2+x(t)^2)/x(t)^2)-2*x(t))*x(t)/sqrt(y(t)^2+x(t)^2), diff(y(t), t) = -x(t)*((y(t)^3+y(t)*x(t)^2-y(t)-x(t))*sqrt((y(t)^2+x(t)^2)/x(t)^2)-2*y(t))/sqrt(y(t)^2+x(t)^2)], [x(t), y(t)], t = 0 .. 50, [[x(0) = -1, y(0) = -1], [x(0) = -5, y(0) = -5]], x = -10 .. 20, y = -10 .. 30, dirgrid = [40, 40], stepsize = 0.1e-2, numframes = 90, axes = BOXED, linecolor = black)

phaseportrait([diff(x(t), t) = -((y(t)^2*x(t)+x(t)^3+y(t)-x(t))*((y(t)^2+x(t)^2)/x(t)^2)^(1/2)-2*x(t))*x(t)/(y(t)^2+x(t)^2)^(1/2), diff(y(t), t) = -x(t)*((y(t)^3+y(t)*x(t)^2-y(t)-x(t))*((y(t)^2+x(t)^2)/x(t)^2)^(1/2)-2*y(t))/(y(t)^2+x(t)^2)^(1/2)], [x(t), y(t)], t = 0 .. 50, [[x(0) = -1, y(0) = -1], [x(0) = -5, y(0) = -5]], x = -10 .. 20, y = -10 .. 30, dirgrid = [40, 40], stepsize = 0.1e-2, numframes = 90, axes = BOXED, linecolor = black)

(1)

``

``


 

Download m40.mw

 

Please Wait...