Question: How to plot on the same graph continuous curve for the stable solution branch and dash curve for the unstable solution branch.

Hi, I am working on a bification diagram and was wondering if there is a way to plot the stable and unstable curves onto one figure.

I have two curves, if the eq1<eq2 I would like to indicate when this happens, with a dashed line.

When eq1>eq3 I would like to indicate this with a soild line.

implicitplot, x[m] vs x[u] with axis[2]=[mode=log] 

r:=0.927: K:=1.8182*10^8:d[v]:=0.0038:d[u]:=2: delta:=1: p[m]:=2.5: M:=10^4: p[e]:=0.4: d[e]:=0.1: d[t]:=5*10^(-9): omega:=2.042: b:=1000: h[e]:=1000:h[u]:=1:h[v]:=10^4:

eq1 := r*d[t]*h[e]*x[u]^3+(r*h[e]*(-K*d[t]+d[t]*h[v]+d[e])+r*p[e]*x[m])*x[u]^2+(r*h[e]*(-K*d[t]*h[v]-K*d[e]+d[e]*h[v])+K*p[e]*(d[u]-r)*x[m])*x[u]-r*K*h[e]*d[e]*h[v];

eq2 := (d[t]*x[u]+d[e])*(2*r*x[u]/K+d[u]*p[e]*x[m]*x[u]/((h[v]+x[u])*(d[t]*x[u]+d[e])*(h[e]+p[e]*x[m]*x[u]/((h[v]+x[u])*(d[t]*x[u]+d[e]))))-r)+d[u]*h[e]*x[u]*(p[e]*h[v]*x[m]/(h[v]+x[u])^2-d[t]*p[e]*x[m]*x[u]/((h[v]+x[u])*(d[t]*x[u]+d[e])))/(h[e]+p[e]*x[m]*x[u]/((h[v]+x[u])*(d[t]*x[u]+d[e])))^2

Please Wait...