Question: How do I algebraicly expand an expression without manually adding multiplication signs?

The original question (crossed through below) was too vague, so I tried to clarified it:

I have the following expression
Q(h);
 1 /  2                    1                 2    / 3\   1     
 - |- - f(x) - D(f)(x) h + - @@(D, 2)(f)(x) h  + O\h / + - f(x)
 h \  3                    2                             2     

      1                                        2    / 3\\
    + - f(x) + 2 D(f)(x) h + 2 @@(D, 2)(f)(x) h  + O\h /|
      6                                                 /


It doesn't expand this following way...
expand(Q(h));
      /                   1                 2    / 3\\       
    2 |f(x) - D(f)(x) h + - @@(D, 2)(f)(x) h  + O\h /|       
      \                   2                          /   f(x)
  - -------------------------------------------------- + ----
                           3 h                           2 h

                                              2    / 3\
       f(x) + 2 D(f)(x) h + 2 @@(D, 2)(f)(x) h  + O\h /
     + ------------------------------------------------
                             6 h                       


But it does expand when I add the multiplication symbols manually:
expand(2*(f(x) - D(f)(x)*h + 1/2*(D@@2)(f)(x)*h^2 + O(h^3))/(3*h) + f(x)/(2*h) + (f(x) + 2*D(f)(x)*h + 2*(D@@2)(f)(x)*h^2 + O(h^3))/(6*h));
                                                    / 3\
       4 f(x)   1           2                    5 O\h /
       ------ - - D(f)(x) + - h @@(D, 2)(f)(x) + -------
        3 h     3           3                      6 h  

How can I expand my output without having to add the multiplication symbols?


------------------------------------old question below, please disregard----------------------

How can I expand the 2D-output without having to manually add multiplication signs? screenshot below for readability.

restart;
a)
Change to correct values:
a := -2;
                            a := -2

b := 0;
                             b := 0

c := 3;
                             c := 3


Q := h -> (alpha[a]*f(x + a*h) + alpha[b]*f(x + b*h) + alpha[c]*f(x + c*h))/h;
 Q := proc (h) options operator, arrow, function_assign;

    (alpha[a]*f(x+a*h)+alpha[b]*f(x+b*h)+alpha[c]*f(x+c*h))/h

    end proc


myfun := (aa, bb, cc) -> subs(alpha[a] = aa, alpha[b] = bb, alpha[c] = cc, Q(h)*h);
myfun := proc (aa, bb, cc) options operator, arrow, function_ass\

  ign; subs(alpha[a] = aa, alpha[b] = bb, alpha[c] = cc,

   Q(h)*h) end proc


myfun(1, 0, 0);
                           f(x - 2 h)

f(x - 2*h) := taylor(myfun(1, 0, 0), h = 0, 3);
                                                      2    / 3\
 f(x - 2 h) := f(x) - 2 D(f)(x) h + 2 @@(D, 2)(f)(x) h  + O\h /

myfun(0, 0, 1);
                           f(x + 3 h)

f(x + 3*h) := taylor(myfun(0, 0, 1), h = 0, 3);
                                    9                 2    / 3\
 f(x + 3 h) := f(x) + 3 D(f)(x) h + - @@(D, 2)(f)(x) h  + O\h /
                                    2                          

expand(Q(h));
          /                                       2    / 3\\
alpha[-2] \f(x) - 2 D(f)(x) h + 2 @@(D, 2)(f)(x) h  + O\h //
------------------------------------------------------------
                             h                              

     alpha[0] f(x)
   + -------------
           h      

              /                     9                 2    / 3\\
     alpha[3] |f(x) + 3 D(f)(x) h + - @@(D, 2)(f)(x) h  + O\h /|
              \                     2                          /
   + -----------------------------------------------------------
                                  h                             


Parse:-ConvertTo1D, "_Inert_PROD structures must have 2 args inside SERIES";
          /                                       2    / 3\\
alpha[-2] \f(x) - 2 D(f)(x) h + 2 @@(D, 2)(f)(x) h  + O\h //
------------------------------------------------------------
                             h                              

     alpha[0] f(x)
   + -------------
           h      

              /                     9                 2    / 3\\
     alpha[3] |f(x) + 3 D(f)(x) h + - @@(D, 2)(f)(x) h  + O\h /|
              \                     2                          /
   + -----------------------------------------------------------
                                  h                             


NULL;
#! Add multiplication signs since maple won't:
expand(alpha[-2]*(f(x) - 2*D(f)(x)*h + 2*(D@@2)(f)(x)*h^2 + O(h^3))/h + alpha[0]*f(x)/h + alpha[3]*(f(x) + 3*D(f)(x)*h + 9/2*(D@@2)(f)(x)*h^2 + O(h^3))/h);

Please Wait...