Question: How to get convergent solution of the shear flow problem?

Hi,

Need your help to find the convergent solution of the attached problem.

Here is some information about parameters

(0 <= gamma <= 10,      0 <= rho & nu <= 200)

 

Arif_Ullah.mw
 

 

restart:

with(plots):

N:=6:

 

eq1 :=3*diff(f(eta),eta,eta,eta)+2*f(eta)*diff(f(eta),eta,eta)-(diff(f(eta),eta))^2;

3*(diff(diff(diff(f(eta), eta), eta), eta))+2*f(eta)*(diff(diff(f(eta), eta), eta))-(diff(f(eta), eta))^2

(1)

NULL

eq2 := 3*nu*diff(g(eta),eta,eta,eta)+2*g(eta)*diff(g(eta),eta,eta)-(diff(g(eta),eta))^2;

3*nu*(diff(diff(diff(g(eta), eta), eta), eta))+2*g(eta)*(diff(diff(g(eta), eta), eta))-(diff(g(eta), eta))^2

(2)

 

bc:=f(0) = 0, g(0) = 0, D(f)(0) = D(g)(0), D(D(f))(0) = -rho*nu*D(D(g))(0), D(D(f))(6) = 1, D(D(g))(N) = gamma;

f(0) = 0, g(0) = 0, (D(f))(0) = (D(g))(0), ((D@@2)(f))(0) = -rho*nu*((D@@2)(g))(0), ((D@@2)(f))(6) = 1, ((D@@2)(g))(6) = gamma

(3)

 

para:={nu=3, gamma=10};

{gamma = 10, nu = 3}

(4)

 

A1 := dsolve(subs(para,rho=2, {bc, eq1, eq2}), numeric,method = bvp[midrich],maxmesh=12500, output=array([seq( 0.01*i, i=0..100*N)])):

 

Error, (in dsolve/numeric/bvp) Newton iteration is not converging

 

pf1 := odeplot(A1, [[eta,diff(f(eta),eta), linestyle = 1, color = blue]], 0 .. N):

Error, (in plots/odeplot) input is not a valid dsolve/numeric solution

 

 

pf2 := odeplot(A1, [[eta,diff(g(eta),eta), linestyle = 3, color = red]], 0 .. N):

Error, (in plots/odeplot) input is not a valid dsolve/numeric solution

 

display({pf1,pf2}, axes = boxed,thickness=3,labels = [eta, "f' '"],labelfont = ["ROMAN", 22,Bold,Italic],axesfont = ["ROMAN", "ROMAN", 14,Bold],axis=[thickness=3]);

Error, (in plots:-display) expecting plot structures but received: {pf1, pf2}

 

NULL


 

Download Arif_Ullah.mw

 

Please Wait...