Question: complete simplification

How do I get Maple to simplify:

 

Io := I Cp Vin L1/(M sqrt(Cp L1))

 

to :  I sqrt(L1 CP) Vin/ M  ?

 

Furthermore, if  w = 1/sqrt(L1 *CP),  how do I get Maple to display the solution or the simplification as:

I*Vin/(w M) ?

I've t ried multiple substitutions and simplifications to no avail.

 

Thank you.

Jorge

 

I*Cp*RL*Vin*L1/(M*(Cp*L1)^(1/2))

(4)

simplify(I*Cp*RL*Vin*L1/(M*(L1*Cp)^(1/2)), 'symbolic')

I*Cp^(1/2)*RL*Vin*L1^(1/2)/M

(5)

 

NULL

Io := Vores/RL

I*Cp*Vin*L1/(M*(Cp*L1)^(1/2))

(6)

simplify(I*Cp*Vin*L1/(M*(L1*Cp)^(1/2)))

I*Cp*Vin*L1/(M*(Cp*L1)^(1/2))

(7)

simplify(I*Cp*Vin*L1/(M*(L1*Cp)^(1/2)), 'assume = real')

I*Cp*Vin*L1/(M*(Cp*L1)^(1/2))

(8)

combine(Vores/RL, power)

I*Cp*Vin*L1/(M*(Cp*L1)^(1/2))

(9)

factor(I*Cp*Vin*L1/(M*(L1*Cp)^(1/2)))

I*Cp*Vin*L1/(M*(Cp*L1)^(1/2))

(10)

combine(I*Cp*Vin*L1/(M*(L1*Cp)^(1/2)), radical)

I*Cp*Vin*L1/(M*(Cp*L1)^(1/2))

(11)

I*Cp*Vin*L1/(M*(L1*Cp)^(1/2))

cancel(I*Cp*Vin*L1/(M*(Cp*L1)^(1/2)))

(12)

simplify(cancel(I*Cp*Vin*L1/(M*(L1*Cp)^(1/2))), 'assume = real')

I*Cp*Vin*L1/(M*(Cp*L1)^(1/2))

(13)

simplify(I*Cp*Vin*L1/(M*(L1*Cp)^(1/2)), 'radical')

I*Cp*Vin*L1/(M*(Cp*L1)^(1/2))

(14)

simplify(I*Cp*Vin*L1/(M*(L1*Cp)^(1/2)), 'symbolic')

I*Cp^(1/2)*Vin*L1^(1/2)/M

(15)

``


 

Download Resonant_xformer.mw

 

Please Wait...