Question: how to use odetest to very series solution with expansion point at infinity?

I do not remember now if this was asked before. Doing search here is hard. 

But I am trying this now on 2022.1 and this gives FAIL.

What is the correct syntax to use odetest to verify solution to ode using series method with expansion around infinity? Why do I get FAIL here?
 

interface(version)

`Standard Worksheet Interface, Maple 2022.1, Windows 10, May 26 2022 Build ID 1619613`

Physics:-Version()

`The "Physics Updates" version in the MapleCloud is 1257 and is the same as the version installed in this computer, created 2022, June 22, 16:27 hours Pacific Time.`

restart;

ode:=x^3*diff(y(x),x$2)+x^2*diff(y(x),x)+y(x)=0;
sol:=dsolve(ode,y(x),'series',x=infinity);
odetest(sol,ode,'series','point'=infinity)

x^3*(diff(diff(y(x), x), x))+x^2*(diff(y(x), x))+y(x) = 0

y(x) = _C1*(1-1/x+(1/4)/x^2-(1/36)/x^3+(1/576)/x^4-(1/14400)/x^5+O(1/x^6))+_C2*(ln(1/x)*(1-1/x+(1/4)/x^2-(1/36)/x^3+(1/576)/x^4-(1/14400)/x^5+O(1/x^6))+2/x-(3/4)/x^2+(11/108)/x^3-(25/3456)/x^4+(137/432000)/x^5+O(1/x^6))

Warning, unable to compute series necessary to test the given solution

FAIL

 


 

Download odetest_series.mw

Update

I've testsed methods given below on 6 random ode's using Maple odetest, VV method and Axel method. THis is the result obtained using Maple 2022.1 

odetest was able to verify the solution zero out of 6 times.
VV method was able to verify the solution 3 out of 6 times.
Axel method was able to verify the solution 5 out of 6 times.

So based on this small test, Axel method seems to do the best. Attached worksheet. I will use this method to verify my series solution to ode's instead of Maple's odetest but will use Maple's odetest for non-series method solutions.


 

interface(version);

`Standard Worksheet Interface, Maple 2022.1, Windows 10, May 26 2022 Build ID 1619613`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1257 and is the same as the version installed in this computer, created 2022, June 22, 16:27 hours Pacific Time.`

restart;

Example 1  Regular singular point. Complex roots

 

Order:=6;
ode:=sin(x)*diff(y(x),x$2)+cos(x)*diff(y(x),x)+1/x*y(x)=0;
sol:=dsolve(ode,y(x),type='series',x=0)

6

sin(x)*(diff(diff(y(x), x), x))+cos(x)*(diff(y(x), x))+y(x)/x = 0

y(x) = _C1*x^(-I)*(series(1+(1/48-(1/16)*I)*x^2+(1/57600-(217/57600)*I)*x^4+O(x^6),x,6))+_C2*x^I*(series(1+(1/48+(1/16)*I)*x^2+(1/57600+(217/57600)*I)*x^4+O(x^6),x,6))

VV method

 

odetest(sol,ode):
asympt(%,x);

Error, (in asympt) unable to compute series

odetest method

 

odetest(sol,ode,'series','point'=0);

y(x) = _C1*x^(-I)*(series(1+(1/48-(1/16)*I)*x^2+(1/57600-(217/57600)*I)*x^4+O(x^6),x,6))+_C2*x^I*(series(1+(1/48+(1/16)*I)*x^2+(1/57600+(217/57600)*I)*x^4+O(x^6),x,6))

y(t) = _C1*t^(-I)*(series(1+(1/48-(1/16)*I)*t^2+(1/57600-(217/57600)*I)*t^4+O(t^6),t,6))+_C2*t^I*(series(1+(1/48+(1/16)*I)*t^2+(1/57600+(217/57600)*I)*t^4+O(t^6),t,6))

Axel method

 

rhs(sol):
Y:= unapply(%, x):
eval(lhs(ode), y=Y):
MultiSeries:-asympt(%, x):
convert(%,polynom);

0

Example 2 Regular singular point. Dierence is integer

 

Order:=6;
ode:=sin(x)*diff(y(x),x$2)+cos(x)*y(x)=0;
sol:=dsolve(ode,y(x),type='series',x=0):

6

sin(x)*(diff(diff(y(x), x), x))+cos(x)*y(x) = 0

VV method

 

odetest(sol,ode):
asympt(%,x);
convert(%,polynom);

O(x^7)

0

odetest method

 

odetest(sol,ode,'series','point'=0);

Warning, unable to compute series necessary to test the given solution

FAIL

y(t) = _C1*t^(-I)*(series(1+(1/48-(1/16)*I)*t^2+(1/57600-(217/57600)*I)*t^4+O(t^6),t,6))+_C2*t^I*(series(1+(1/48+(1/16)*I)*t^2+(1/57600+(217/57600)*I)*t^4+O(t^6),t,6))

Axel method

   

rhs(sol):
Y:= unapply(%, x):
eval(lhs(ode), y=Y):
MultiSeries:-asympt(%, x):
convert(%,polynom);

0

Example 3 Regular singular point. Repeated root

 

Order:=6;
ode:=(exp(x)-1)*diff(y(x),x$2)+exp(x)*diff(y(x),x)+y(x)=0;
sol:=dsolve(ode,y(x),type='series',x=0):

6

(exp(x)-1)*(diff(diff(y(x), x), x))+exp(x)*(diff(y(x), x))+y(x) = 0

VV method

 

odetest(sol,ode):
asympt(%,x):
convert(%,polynom);

0

odetest method

 

odetest(sol,ode,'series','point'=0);

Warning, unable to compute series necessary to test the given solution

FAIL

y(t) = _C1*t^(-I)*(series(1+(1/48-(1/16)*I)*t^2+(1/57600-(217/57600)*I)*t^4+O(t^6),t,6))+_C2*t^I*(series(1+(1/48+(1/16)*I)*t^2+(1/57600+(217/57600)*I)*t^4+O(t^6),t,6))

Axel method

   

rhs(sol):
Y:= unapply(%, x):
eval(lhs(ode), y=Y):
MultiSeries:-asympt(%, x):
convert(%,polynom);

0

Example 4 Regular singular point. Repeated root

 

Order:=6;  
ode:=(exp(x)-1)*diff(y(x),x$2)+exp(x)*diff(y(x),x)+y(x)=0;
sol:=dsolve(ode,y(x),type='series',x=0):

6

(exp(x)-1)*(diff(diff(y(x), x), x))+exp(x)*(diff(y(x), x))+y(x) = 0

VV method

 

odetest(sol,ode):
asympt(%,x):
convert(%,polynom);

0

odetest method

 

odetest(sol,ode,'series','point'=0);

Warning, unable to compute series necessary to test the given solution

FAIL

y(t) = _C1*t^(-I)*(series(1+(1/48-(1/16)*I)*t^2+(1/57600-(217/57600)*I)*t^4+O(t^6),t,6))+_C2*t^I*(series(1+(1/48+(1/16)*I)*t^2+(1/57600+(217/57600)*I)*t^4+O(t^6),t,6))

Axel method

   

rhs(sol):
Y:= unapply(%, x):
eval(lhs(ode), y=Y):
MultiSeries:-asympt(%, x):
convert(%,polynom);

0

Example 5 . Regular singular point. Complex roots

 

Order:=6;  
ode:=x^3*diff(y(x),x$2)+sin(x^3)*diff(y(x),x)+x*y(x)=0;
sol:=dsolve(ode,y(x),type='series',x=0):

6

x^3*(diff(diff(y(x), x), x))+sin(x^3)*(diff(y(x), x))+x*y(x) = 0

VV method

 

odetest(sol,ode):
asympt(%,x);
#convert(%,polynom);

Error, (in asympt) unable to compute series

odetest method

 

odetest(sol,ode,'series','point'=0);

Error, (in odetest/series) need to determine the sign of I*3^(1/2)

y(t) = _C1*t^(-I)*(series(1+(1/48-(1/16)*I)*t^2+(1/57600-(217/57600)*I)*t^4+O(t^6),t,6))+_C2*t^I*(series(1+(1/48+(1/16)*I)*t^2+(1/57600+(217/57600)*I)*t^4+O(t^6),t,6))

Axel method

   

rhs(sol):
Y:= unapply(%, x):
eval(lhs(ode), y=Y):
MultiSeries:-asympt(%, x):
#convert(%,polynom);

Error, (in MultiSeries:-multiseries) need to determine the sign of -I*3^(1/2)

Example 6 . Regular singular point. Complex roots

 

Order:=6;  
ode:=x^2*diff(y(x),x$2)+x*diff(y(x),x)+(x+1)*y(x)=0;
sol:=dsolve(ode,y(x),type='series',x=0):

6

x^2*(diff(diff(y(x), x), x))+x*(diff(y(x), x))+(x+1)*y(x) = 0

VV method

 

odetest(sol,ode):
asympt(%,x);
#convert(%,polynom);

Error, (in asympt) unable to compute series

odetest method

 

odetest(sol,ode,'series','point'=0);

y(x) = _C1*x^(-I)*(series(1+(-1/5-(2/5)*I)*x+(-1/40+(3/40)*I)*x^2+(3/520-(7/1560)*I)*x^3+(-1/2496+(1/12480)*I)*x^4+(9/603200+(1/361920)*I)*x^5+O(x^6),x,6))+_C2*x^I*(series(1+(-1/5+(2/5)*I)*x+(-1/40-(3/40)*I)*x^2+(3/520+(7/1560)*I)*x^3+(-1/2496-(1/12480)*I)*x^4+(9/603200-(1/361920)*I)*x^5+O(x^6),x,6))

y(t) = _C1*t^(-I)*(series(1+(1/48-(1/16)*I)*t^2+(1/57600-(217/57600)*I)*t^4+O(t^6),t,6))+_C2*t^I*(series(1+(1/48+(1/16)*I)*t^2+(1/57600+(217/57600)*I)*t^4+O(t^6),t,6))

Axel method

   

rhs(sol):
Y:= unapply(%, x):
eval(lhs(ode), y=Y):
MultiSeries:-asympt(%, x):
convert(%,polynom);

0

 

 


 

Download test_new_odetest.mw

 

 

 

Please Wait...