Question: What is the reason for unable to compute steps of integration of e^(t^3)*(cos(t))^3 ?

I am curious to know steps of integration for e^(t^3)*(cos(t))^3 as Maple found the answer correctly. So I wanted to know how it got to that solution. I applied the commands shown in document but unable to get steps. I want to know the reason for this and is it possible to get it work.
 

``

exp(t^2)*cos(t)^3

int(exp(t^2)*cos(t)^3, t)

-((1/16)*I)*Pi^(1/2)*exp(9/4)*erf(I*t+3/2)-((3/16)*I)*Pi^(1/2)*exp(1/4)*erf(I*t+1/2)-((3/16)*I)*Pi^(1/2)*exp(1/4)*erf(I*t-1/2)-((1/16)*I)*Pi^(1/2)*exp(9/4)*erf(I*t-3/2)

(1)

Student[Calculus1][IntTutor]()

eval(-((1/16)*I)*Pi^(1/2)*exp(9/4)*erf(I*t+3/2)-((3/16)*I)*Pi^(1/2)*exp(1/4)*erf(I*t+1/2)-((3/16)*I)*Pi^(1/2)*exp(1/4)*erf(I*t-1/2)-((1/16)*I)*Pi^(1/2)*exp(9/4)*erf(I*t-3/2), [t = 1])

-((1/16)*I)*Pi^(1/2)*exp(9/4)*erf(3/2+I)-((3/16)*I)*Pi^(1/2)*exp(1/4)*erf(1/2+I)+((3/16)*I)*Pi^(1/2)*exp(1/4)*erf(1/2-I)+((1/16)*I)*Pi^(1/2)*exp(9/4)*erf(3/2-I)

(2)

evalf[10](-((1/16)*I)*Pi^(1/2)*exp(9/4)*erf(3/2+I)-((3/16)*I)*Pi^(1/2)*exp(1/4)*erf(1/2+I)+((3/16)*I)*Pi^(1/2)*exp(1/4)*erf(1/2-I)+((1/16)*I)*Pi^(1/2)*exp(9/4)*erf(3/2-I))

.8154967124+0.*I

(3)

        
with(Student:-Calculus1):

 

 

Understand(Int, constant, constantmultiple, sum, difference)

ShowSolution(Int(exp(t^2)*cos(t)^3, t), maxsteps = 1000)

Error, (in Student:-Calculus1:-ShowSolution) unable to compute solution steps

 

NULL


 

Download e.mwe.mw

 

Please Wait...