Question: How can I solve this units problem?

with(Physics)

diff(x(t), `$`(t, 2)) = a(t)

diff(diff(x(t), t), t) = a(t)

(1)

dsolve(diff(diff(x(t), t), t) = a(t), arbitraryconstants = subscripted)

x(t) = Int(Int(a(t), t), t)+c__1*t+c__2

(2)

a(t) = 1.*Unit('m'/'s'^2), c__1 = 2*Unit('m'/'s'), c__2 = 3*Unit('m')

a(t) = 1.*Units:-Unit(m/s^2), c__1 = 2*Units:-Unit(m/s), c__2 = 3*Units:-Unit(m)

(3)

subs(a(t) = 1.*Units:-Unit(m/s^2), c__1 = 2*Units:-Unit(m/s), c__2 = 3*Units:-Unit(m), x(t) = Int(Int(a(t), t), t)+c__1*t+c__2)

x(t) = Int(Int(1.*Units:-Unit(m/s^2), t), t)+2*Units:-Unit(m/s)*t+3*Units:-Unit(m)

(4)

value(%)

x(t) = (1/2)*t^2*Units:-Unit(m/s^2)+2*Units:-Unit(m/s)*t+3*Units:-Unit(m)

(5)

NULL

Warning, units problem, not enough information to unambiguously deduce the units of the variables {t}; proceeding as if dimensionless

How can I provide the information to Maple that the unit of t is s?

 

Update: Temporarily disabling the warning would also be an option for the above case.

 

Download Unit_of_t.mw

Please Wait...