Question: How to draw a mixed parametric and implicit region (ignoring certain lower-dimensional components) in 2D right?

After studying the plottools:-transform command, I intend to visualize the following regions with constrained parameters in 
 

(plottools[transform](proc (u, v) options operator, arrow; [u^3-v^2, u^2-v^3] end proc))(plots[inequal](`or`(u^2+4*v^2 <= 4, `and`(u^2+v^2 < 4, 4*v >= (u+2)^2+2*v^2)), nolines))

 

(plottools[transform](proc (s, t) options operator, arrow; [s^2*sqrt(t)*cos(t), s^2*sin(t)] end proc))(plots[inequal](`and`(`and`(s >= 1, 5*s <= 5+t), t < 5), s = 1 .. 2, t = 0 .. 5))

 

 

But Mma gives 

The first instance (with default settings) is the same, but as for the second instance, which graph is correct? 

restart;
with(plottools):
with(plots):
transform((u, v) -> [u^3 - v^2, u^2 - v^3])(inequal(Or(u^2 + 4*v^2 <= 4, And(u^2 + v^2 < 4, (u + 2)^2 + 2*(v - 1)^2 <= 2)), nolines));
transform((s, t) -> [s^2*sqrt(t)*cos(t), s^2*sin(t)])(inequal(`and`(1 <= s, 5*s <= 5 + t, t < 5), s = 1 .. 2, t = 0 .. 5));


Download TransformedRegion.mws

Please Wait...