Question: Package is not recognising it's special Types

This is part of a package I put together in VScode. Testing it using CMaple.exe worked fine from the code editor. Then I imported it into Maple and saved it as a package, After ra restart  using using with(....) to load it, the special types defined in the package are not recognised. Procedures that don't check for the special types work ok. I have included one of each in the worksheet. 

If I just read in the .mpl file things do work.

What is the cause of this problem?

A secondary question. If I use the same special types in another package. Would that cause a conflict if both are loaded together?

restart

RationalTrigonometry:=module()
    option package;
    
    export
        AcuteObstuseQ,
        AcuteObstuseS,
        AltitudeQ,
        CircleParm,
        CircumCirQ,
        CfstoLeqn,
        CrossLaw,
        LinePrll,
        LinePrpnd,
        LinePts,
        LPproj,
        MedianQ,
        #QPrj,
        Quadrance,
        Quadrea,
        QQF,
        SolidSpread,
        SpreadLawQuadrea,
        SpreadLaw,
        SpreadPoly,
        Spread,
        Spreads123,
        TQF,
        TSF,
        UHG;

local MyModule,RelDPxyz,ppp,xpsn,ypsn,zpsn;

MyModule:= module()
uses TT= TypeTools;
global _T1, _T2L, _T2V, _T2VR, _T3L, _T3V, _T3VC, _T3VR, _T4L, _MyType,GeomClr,Prntmsg, prjpsn;
          GeomClr:="Blue";
          Prntmsg:="y";
          prjpsn:=3;

local
     MyTypes:= {_T1, _T2L, _T2V, _T2VR, _T3L, _T3V, _T3VC, _T3VR, _T4L},
     AllMyTypes:= MyTypes union {_MyType},
     ModuleLoad,
      ModuleUnload:= proc()
     local T;
          for T in AllMyTypes do if TT:-Exists(T) then TT:-RemoveType(T) end if; end do;
          return
     end proc;

     ModuleLoad:= proc()
     local
          g, #iterator over module globals
          e
     ;
          
          ModuleUnload();
          #op([2,6], ...) of a module is its globals.
          for g in op([2,6], thismodule) do
               e:= eval(g);
               #print("e",e);
               if g <> e and e in AllMyTypes then
                    error "The name %1 must be globally available.", g
               end if
          end do;
          TT:-AddType(_T1, algebraic);
          TT:-AddType(_T2V, 'Vector(2, algebraic)');
          TT:-AddType(_T2VR, 'Vector[row](2, algebraic)');
          TT:-AddType(_T2L, [algebraic $ 2]);
          TT:-AddType(_T3V, 'Vector(3, algebraic)');
          TT:-AddType(_T3VC, 'Vector[column](3, algebraic)');
          TT:-AddType(_T3VR, 'Vector[row](3, algebraic)');
          TT:-AddType(_T3L, [algebraic $ 3]);
          TT:-AddType(_T4L, [algebraic $ 4]);
          TT:-AddType(_MyType, MyTypes);
          return
     end proc;
export
     WhichMyType:= proc(X)
     local S:= select(T-> X::T, MyTypes), n:= nops(S);
         printf("%a is ", X);
         if n=0 then printf("not any of the special types.\n")
         else printf("type %a.\n", `if`(n=1, S[], Amd(S[])))
         fi
      end proc;
export    
     Dsp:= proc(msg:=" empty",prnt:=Prntmsg )
          if prnt = "y" then print(msg); end if;
     end proc;

     ModuleLoad()    
     end module;

ppp:=proc(prjpsn)
     description " the position x,y,z or z,x,y in a Vector";   
     if prjpsn=1 then   
        xpsn:=2;
        ypsn:=3;
        zpsn:=1;
      else  
        xpsn:=1;
        ypsn:=2;
        zpsn:=3;  
     end if;
    return xpsn, ypsn, zpsn
end proc;
    






#$include "Rational_Trigonometry\Quadruple Quad Formula.mpl"
#$include "Rational_Trigonometry\Quadrances_Overload_procs.mpl"

Quadrance :=overload([
   
   # 1 Quadrances p0 [x,y]
        proc(p0::{_T2L,_T2V}, clr := GeomClr,$)
                option overload;
                description "Calculates Quadrance of a [x,y] point";
                uses LinearAlgebra;         
                if clr = "b" or clr = "B" or clr = "blue" or clr = "Blue" then
                                MyModule:-Dsp(" Blue");
                                        BilinearForm(p0, p0, conjugate = false) ;
                        elif clr = "r" or clr = "R" or clr = "red" or clr = "Red" then
                                MyModule:-Dsp(" Red");
                                        p0[1]^2 - p0[2]^2 ;
                        elif clr = "g" or clr = "G" or clr = "green" or clr = "Green" then
                                MyModule:-Dsp(" Green");
                                        2*p0[1]*p0[2];
                end if;
        end proc,
# 7 Quadrances Point to Plane and intersection point 3D
        proc(p0::{_T3L,_T3V},pl::{_T4L,`+`,procedure},var::_T3L:=[x,y,z],$)
        option overload;
                local i, dlambda,nlambda,lambda,Q   ,intrP,  Vpn  ,f1  ;
                if pl::_T4L then
                        Vpn:=convert(pl,Vector[row]);
                 elif pl::{`+`,procedure} then
                        f1 := `if`(pl::procedure, pl(vars[]), pl);
                        Vpn:=<coeff(f1,var[1]),coeff(f1,var[2]),coeff(f1,var[3]),coeff(coeff(coeff(f1,var[3],0),var[2],0),var[1],0)>;
                end  if;
                
                nlambda:=(Vpn[1]*p0[1]+Vpn[2]*p0[2]+Vpn[3]*p0[3]+Vpn[4]);
                dlambda:=Vpn[1]^2+Vpn[2]^2+Vpn[3]^2;
                lambda:=nlambda/dlambda;
                intrP:=`<|>`(seq(p0[i]+lambda*Vpn[i],i=1..3));
                Q:=nlambda^2/dlambda;
                MyModule:-WhichMyType(pl);
                MyModule:-Dsp("Quadrance Point to Plane & intersect Point");
                return Q,intrP
                end proc,

        # 2 Quadrances p0 [x,y,z]
        proc(p0::{_T3L,_T3V}, clr := GeomClr,$)
                option overload;
                description "Calculates Quadrance of a [x,y,z] point Blue only";
                uses LinearAlgebra;         
                if clr = "b" or clr = "B" or clr = "blue" or clr = "Blue" then
                         MyModule:-Dsp("Quadrance 3D Point Blue");
                                BilinearForm(p0, p0, conjugate = false);
                        else print("3D Not yet implimented for Red or Green Geometry" );        
                end if;
        end proc,

        # 3 Quadrances P0-P1 [x,y]
         proc(p0::{_T2L,_T2V},p1::{_T2L,_T2V}, clr := GeomClr,$)
                option overload;
                description "Quadrance between two [x,y] points";        
                uses LinearAlgebra;                                
                if clr = "b" or clr = "B" or clr = "blue" or clr = "Blue" then                  
                                MyModule:-Dsp( "Quadrance between two 2D Points Blue") ;
                                 BilinearForm(p0 - p1, p0 - p1, conjugate = false);                        
                        elif clr = "r" or clr = "R" or clr = "red" or clr = "Red" then
                                        MyModule:-Dsp( "Quadrance between two 2D Points Red") ;
                                         (p0[1] - p1[1])^2 - (p0[2] - p1[2])^2;                         
                        elif clr = "g" or clr = "G" or clr = "green" or clr = "Green" then                         
                                        MyModule:-Dsp( "Quadrance between two 2D Points Green") ;
                                         (2*p1[1] - 2*p0[1])*(p1[2] - p0[2]);                        
                end if;
        end proc,

        # 4 Quadrances p0-p1 [x,y,z]
        proc(p0::{_T3L,_T3V},p1::{_T3L,_T3V}, clr::string := GeomClr,$)
                option overload;
                description "Calculates Quadrance of between two points/vectors [x,y,z] Blue only";
                uses LinearAlgebra;         
                if clr = "b" or clr = "B" or clr = "blue" or clr = "Blue" then
                                        MyModule:-Dsp( "Quadrance between two 3D Points Blue") ;
                                        BilinearForm(p0 - p1, p0 - p1, conjugate = false);
                        else print("Not at this point  implimented for Red or Green Geometry" );        
                end if;
        end proc,

        # 5 Quadrances Point to Line and intersection point 2D
        proc(p0::_T2L, l1::{_T3L,`+`,procedure}, vars::_T2L:=[x,y],clr:=GeomClr)
                option overload;
                local f1,P0:=p0,P1;
                if l1::_T3L then
                        P1:=l1;
                 else
                        f1 := `if`(l1::procedure, l1(vars[]), l1);
                        P1:=[coeff(f1,vars[1]),coeff(f1,vars[2]),coeff(coeff(f1,vars[1],0),vars[2],0)];
                end if;
                if  clr = "b" or clr = "B" or clr = "blue" or clr = "Blue"  then
                        MyModule:-Dsp( "Quadrance 2D Point to Line & intersect Point Blue") ;
                        return (P0[1]*P1[1] + P0[2]*P1[2] + P1[3])^2/(P1[1]^2 + P1[2]^2),
                        [((-P0[2]*P1[2] - P1[3])*P1[1] + P0[1]*P1[2]^2)/(P1[1]^2 + P1[2]^2),
                        ((-P0[1]*P1[1] - P1[3])*P1[2] + P0[2]*P1[1]^2)/(P1[1]^2 + P1[2]^2)];
                         
                 elif clr = "r" or clr = "R" or clr = "red" or clr = "Red"  then
                        if P1[1]^2 - P1[2]^2 <> 0 then
                                MyModule:-Dsp( "Quadrance 2D Point to Line & intersect Point Red") ;
                                return (P0[1]*P1[1] + P0[2]*P1[2] + P1[3])^2/(P1[1]^2 - P1[2]^2),
                                [((-P0[2]*P1[2] - P1[3])*P1[1] - P0[1]*P1[2]^2)/(P1[1]^2 - P1[2]^2),
                                ((P0[1]*P1[1] + P1[3])*P1[2] + P0[2]*P1[1]^2)/(P1[1]^2 - P1[2]^2)];
                                
                         else
                                "Null Red"
                        end if;
                 
                        #"Input ERROR "Red"";         
                 elif clr = "g" or clr = "G" or clr = "green" or clr = "Green" then
                        if P1[1]*P1[2] = 0 then
                                "Null Green";
                         else
                                 MyModule:-Dsp( "Quadrance 2D Point to Line & intersect Point Green") ;
                                return 1/2*(P0[1]*P1[1] + P0[2]*P1[2] + P1[3])^2/(P1[1]*P1[2]),
                                [1/2*(P0[1]*P1[1] - P0[2]*P1[2] - P1[3])/P1[1],
                                1/2*(-P0[1]*P1[1] + P0[2]*P1[2] - P1[3])/P1[2]];
                                 
                        end if;
                 else
                        "Input ERROR Green";  
                end if;
        end proc,
        
        # 6 Quadrances Point to Line and intersection point 3D
        proc(p0::{_T3L,_T3V},lP::{_T3L,_T3V},lV::{_T3V},$)
                option overload;
                local lambda , Q ,intrP ;
                lambda:=((p0[1]-lP[1])*lV[1]+(p0[2]-lP[2])*lV[2]+(p0[3]-lP[3])*lV[3])/(lV[1]^2+lV[2]^2+lV[3]^2);
                print(lambda);
                Q:=((p0[1]-lP[1]-lambda*lV[1])^2+(p0[2]-lP[2]-lambda*lV[2])^2+(p0[3]-lP[3]-lambda*lV[3])^2);
                
                intrP:=lP+lambda*lV;
                MyModule:-Dsp("Quadrance Point to 3D Line and Intersect Point");

                return Q,intrP
        end proc

        

        

]):


QQF := proc(Q1, Q2, Q3, Q4)
 ((Q1 + Q2 + Q3 + Q4)^2 - 2*Q1^2 - 2*Q2^2 - 2*Q3^2 - 2*Q4^2)^2 = 64*Q2*Q1*Q3*Q4;
 end proc;

     

end module:

 

RationalTrigonometry:-Quadrance([0,2,3],<3,1,-1>,<2,1,2>);

1/3

"Quadrance Point to 3D Line and Intersect Point"

25, Vector[column](%id = 36893489965928498348)

RationalTrigonometry:-Quadrance([4,-4,3],2*x-2*y+5*z+8,[x,y,z]);

2*x-2*y+5*z+8 is type _T1.

"Quadrance Point to Plane & intersect Point"

507/11, Vector[row](%id = 36893489965928500148)

RationalTrigonometry:-Quadrance([4,-4,3],[2,-2,5,8]);

[2, -2, 5, 8] is type _T4L.

"Quadrance Point to Plane & intersect Point"

507/11, Vector[row](%id = 36893489965928493652)

Qb:=RationalTrigonometry:-Quadrance([a,b],[c,d],"b");

"Quadrance between two 2D Points Blue"

(-c+a)^2+(-d+b)^2

RationalTrigonometry:-QQF(a,b,c,d)

((a+b+c+d)^2-2*a^2-2*b^2-2*c^2-2*d^2)^2 = 64*b*a*c*d

RationalTrigonometry:-QQF(10^2,5^2,2^2,3^2)

5760000 = 5760000

restart

with(RationalTrigonometry)

[AcuteObstuseQ, AcuteObstuseS, AltitudeQ, CfstoLeqn, CircleParm, CircumCirQ, CrossLaw, LPproj, LinePrll, LinePrpnd, LinePts, MedianQ, QQF, Quadrance, Quadrea, SolidSpread, Spread, SpreadLaw, SpreadLawQuadrea, SpreadPoly, Spreads123, TQF, TSF, UHG]

Quadrance([4,-4,3],2*x-2*y+5*z+8,[x,y,z])

Error, type `_T3L` does not exist

QQF(10^2,5^2,2^2,3^2)
                       5760000 = 5760000

 


 

Download Q_2023-01-14_Package_not_Recognising_Types.mw

Please Wait...