Question: Inverse Z Transform with Coefficients

Hi there,

i am working on an inverse z-transform in MAPLE. I would like to get the Impulse Response for a transferfunction with coefficients a, b, and c.

(z-1)^2/(a*z^2+b*z+c)

In maple, however I get the impulse response with sums over _alpha=RootOf(Z^2...). Through substitution of n = 0...end I get the right result, but for long impulse responses this takes quite a lot of time. With mathematica, however, the inverse z-transform is calculated to 1/(f(b,c)*(g(b,c,))^n+...), where f and g are functions of the coefficients. The function out of mathematica are quite faster to solve. How can I get Maple to solve this equation efficiently?

Greetings

Please Wait...