Question: why Maple 2023 return "undefined" embbeded inside some integrals result?

First issue I see in Maple 2023 integrate

Example 1

restart;
int( (e*x+d)^(3/2)*(c*x^2+a)^(3/2),x)

Example 2

restart;
int((1+x)^(3/2)*(x^2-x+1)^(3/2),x);

Example 3

restart;
int((c*x^4+b*x^2)^(3/2)/x^(3/2),x)

 

Worksheet below for 2023 and also for 2022.2 showing this did not have this problem in 2022.2. Internally for me, this cause other problem when post-processing this, that is why I found it. Any one knows what caused it?  Maple 2022.2 result is much longer, but it does have this "undefined" issue in the result.


 

interface(version);

`Standard Worksheet Interface, Maple 2023.0, Windows 10, March 6 2023 Build ID 1689885`

restart;

int( (e*x+d)^(3/2)*(c*x^2+a)^(3/2),x)

(e*x+d)^(1/2)*(c*x^2+a)^(1/2)*undefined*x*(3*c*e*x^3+4*c*d*x^2+6*a*e*x+12*a*d)/(c*e*x^3+c*d*x^2+a*e*x+a*d)^(1/2)

restart;

int((1+x)^(3/2)*(x^2-x+1)^(3/2),x);

(1+x)^(1/2)*(x^2-x+1)^(1/2)*undefined*x*(x^3+4)/(x^3+1)^(1/2)

restart;

int((c*x^4+b*x^2)^(3/2)/x^(3/2),x)

undefined*(c*x^2+2*b)*(c*x^4+b*x^2)^(3/2)/(x^(1/2)*(c*x^2+b)*(x*(c*x^2+b))^(1/2))

 


 

Download bug_3_maple_2023_int_march_10_2023.mw

 

interface(version);

`Standard Worksheet Interface, Maple 2022.2, Windows 10, October 23 2022 Build ID 1657361`

restart;

int( (e*x+d)^(3/2)*(c*x^2+a)^(3/2),x)

(2/1155)*(e*x+d)^(1/2)*(c*x^2+a)^(1/2)*(372*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticF((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*c*a^3*d*e^6+245*x^6*c^4*d*e^6+300*x^5*a*c^3*e^7+145*x^5*c^4*d^2*e^5-x^4*c^4*d^3*e^4+255*x^3*a^2*c^2*e^7+2*x^3*c^4*d^4*e^3+8*x^2*c^4*d^5*e^2+60*x*a^3*c*e^7+360*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticF((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*c^2*a^2*d^3*e^4-12*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticF((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*c^3*a*d^5*e^2-16*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticF((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*(-c*a)^(1/2)*c^3*d^6*e-432*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticE((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*c*a^3*d*e^6-336*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticE((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*c^2*a^2*d^3*e^4+112*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticE((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*c^3*a*d^5*e^2+766*x^4*a*c^3*d*e^6+16*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticE((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*c^4*d^7+60*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticF((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*(-c*a)^(1/2)*a^3*e^7+518*x^3*a*c^3*d^2*e^5+581*x^2*a^2*c^2*d*e^6+46*x^2*a*c^3*d^3*e^4+373*x*a^2*c^2*d^2*e^5+2*x*a*c^3*d^4*e^3+60*a^3*c*d*e^6+47*a^2*c^2*d^3*e^4+8*a*c^3*d^5*e^2+105*x^7*c^4*e^7-24*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticF((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*(-c*a)^(1/2)*a^2*c*d^2*e^5-100*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticF((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*(-c*a)^(1/2)*a*c^2*d^4*e^3)/(c^2*e^5*(c*e*x^3+c*d*x^2+a*e*x+a*d))

restart;

int((1+x)^(3/2)*(x^2-x+1)^(3/2),x);

-(1/55)*(1+x)^(1/2)*(x^2-x+1)^(1/2)*(-10*x^7+(27*I)*3^(1/2)*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((I*3^(1/2)+2*x-1)/(-3+I*3^(1/2)))^(1/2)*EllipticF((-2*(1+x)/(-3+I*3^(1/2)))^(1/2), (-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))-81*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((I*3^(1/2)+2*x-1)/(-3+I*3^(1/2)))^(1/2)*EllipticF((-2*(1+x)/(-3+I*3^(1/2)))^(1/2), (-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))-38*x^4-28*x)/(x^3+1)

 


 

Download maple_2022_int_march_10_2023.mw

Please Wait...