Question: How to compute definite integral

> int((1 - x)^r*(-2*x + (-2 + x)*log(1 - x))/(2*x*log(1 - x)^2), x = 0 .. 1) assuming 0 <= r

(int((1 - x)^r*(-2*x + (-2 + x)*log(1 - x))/(2*x*log(1 - x)^2), x = 0 .. 1) assuming (0 <= r))

Expected result is:

1 + r - r * ln(1 + r) - 1/2 * ln(2 * Pi * (1 + r)) + lnGAMMA(1 + r)

 

Please Wait...