Question: Root finder for the fourth power polynomial

Could you help me to solve this problem for the parameter beta?

restart;

e1:= 0.5; e2:=0.2;theta:=5;yeq:=e2;

.5

 

.2

 

5

 

.2

(1)

f:=(theta*x-1)*(1-x)*(1+beta*x^2)-y;
g:=x/(1+beta*x^2); gs:=unapply(g,x);

(5*x-1)*(1-x)*(beta*x^2+1)-y

 

x/(beta*x^2+1)

 

proc (x) options operator, arrow; x/(beta*x^2+1) end proc

(2)

fs:=subs(y=yeq,f);

(5*x-1)*(1-x)*(beta*x^2+1)-.2

(3)

assumptions:=x>1/theta, x<1,beta>0,beta<1,gs(x)>e1;
solve(fs=0,x,useassumptions) assuming assumptions;

1/5 < x, x < 1, 0 < beta, beta < 1, .5 < x/(beta*x^2+1)

 

Warning, solve may not respect assumed property 'real' on 'x/(beta*x^2+1)'.

 

Error, (in type/realcons) too many levels of recursion

 

gs2:=subs(beta=0.6,gs(x));

x/(.6*x^2+1)

(4)

sol:= solve(subs(beta=0.6,fs=0),x,useassumptions) assuming x>1/theta, x<1;

.2514854589, .9665623271

(5)

subs(x=sol[1],gs2);

.2422912423

(6)

 

Download Rootsfind.mw

Please Wait...