Question: `evala/Minpoly` and PolynomialTools:-MinimalPolynomial: Wrong results?

Here are three algebraic numbers: (In fact, they are solutions to some equation. See the attachment below.)

bSol := {RootOf(1216*_Z^4 + (264*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^8 + 408*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^7 - 1580*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^6 - 6832*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^5 + 3508*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^4 + 9944*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^3 + 9948*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^2 - 10752*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266) + 5204)*_Z^3 + (891*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^8 + 1652*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^7 - 4748*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^6 - 24076*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^5 + 5354*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^4 + 35356*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^3 + 29668*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^2 - 196*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266) + 3971)*_Z^2 + (506*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^8 + 980*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^7 - 2264*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^6 - 12420*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^5 + 3676*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^4 + 11596*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^3 + 33800*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^2 - 7772*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266) + 1210)*_Z - 473*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^8 - 720*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^7 + 2560*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^6 + 10960*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^5 - 8034*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^4 - 13840*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^3 - 9304*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^2 + 1104*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266) - 1133, index = real[2]), RootOf(1216*_Z^4 + (264*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^8 + 408*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^7 - 1580*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^6 - 6832*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^5 + 3508*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^4 + 9944*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^3 + 9948*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^2 - 10752*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68) + 5204)*_Z^3 + (891*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^8 + 1652*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^7 - 4748*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^6 - 24076*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^5 + 5354*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^4 + 35356*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^3 + 29668*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^2 - 196*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68) + 3971)*_Z^2 + (506*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^8 + 980*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^7 - 2264*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^6 - 12420*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^5 + 3676*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^4 + 11596*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^3 + 33800*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^2 - 7772*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68) + 1210)*_Z - 473*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^8 - 720*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^7 + 2560*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^6 + 10960*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^5 - 8034*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^4 - 13840*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^3 - 9304*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^2 + 1104*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68) - 1133, index = real[2]), RootOf(1216*_Z^4 + (264*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^8 + 408*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^7 - 1580*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^6 - 6832*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^5 + 3508*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^4 + 9944*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^3 + 9948*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^2 - 10752*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657) + 5204)*_Z^3 + (891*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^8 + 1652*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^7 - 4748*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^6 - 24076*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^5 + 5354*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^4 + 35356*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^3 + 29668*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^2 - 196*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657) + 3971)*_Z^2 + (506*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^8 + 980*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^7 - 2264*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^6 - 12420*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^5 + 3676*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^4 + 11596*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^3 + 33800*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^2 - 7772*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657) + 1210)*_Z - 473*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^8 - 720*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^7 + 2560*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^6 + 10960*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^5 - 8034*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^4 - 13840*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^3 - 9304*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^2 + 1104*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657) - 1133, index = real[2])}:

One may check that 11_X9-47_X8+96_X7-376_X6-370_X5-142_X4+280_X3+64_X2-17_X-11 is an “annihilating” polynomial of each of them (using another computer algebra system); accordingly, the degree of the minimal polynomial cannot be greater than 9. However, Maple's output indicates that the minimal polynomial is of degree 36

restart;

alias(`~`[`=`](alpha__ || (1 .. 3), ` $`, RootOf(11*_Z^9+17*_Z^8-64*_Z^7-280*_Z^6+142*_Z^5+370*_Z^4+376*_Z^3-96*_Z^2+47*_Z-11, .2246 .. .2266), RootOf(11*_Z^9+17*_Z^8-64*_Z^7-280*_Z^6+142*_Z^5+370*_Z^4+376*_Z^3-96*_Z^2+47*_Z-11, 1.671 .. 1.68), RootOf(11*_Z^9+17*_Z^8-64*_Z^7-280*_Z^6+142*_Z^5+370*_Z^4+376*_Z^3-96*_Z^2+47*_Z-11, 2.648 .. 2.657)))

({PDETools:-Solve})({`~`[`>=`](a, b, ` $`, 0), a^5*b+4*a^4*b^2+4*a^3*b^3-7*a^4*b-6*a^2*b^3-7*a*b^4+b^5-6*a^3*b+12*a^2*b^2+4*b^4+4*a^3-6*a*b^2+4*b^3+4*a^2-7*a*b+a = 0, a <> b})
bSol := `~`[subs](%, b)

evalf[2*Digits](`~`[eval](11*_X^9-47*_X^8+96*_X^7-376*_X^6-370*_X^5-142*_X^4+280*_X^3+64*_X^2-17*_X-11, `~`[`=`](_X, bSol)))

{RootOf(1216*_Z^4+(264*alpha__1^8+408*alpha__1^7-1580*alpha__1^6-6832*alpha__1^5+3508*alpha__1^4+9944*alpha__1^3+9948*alpha__1^2-10752*alpha__1+5204)*_Z^3+(891*alpha__1^8+1652*alpha__1^7-4748*alpha__1^6-24076*alpha__1^5+5354*alpha__1^4+35356*alpha__1^3+29668*alpha__1^2-196*alpha__1+3971)*_Z^2+(506*alpha__1^8+980*alpha__1^7-2264*alpha__1^6-12420*alpha__1^5+3676*alpha__1^4+11596*alpha__1^3+33800*alpha__1^2-7772*alpha__1+1210)*_Z-473*alpha__1^8-720*alpha__1^7+2560*alpha__1^6+10960*alpha__1^5-8034*alpha__1^4-13840*alpha__1^3-9304*alpha__1^2+1104*alpha__1-1133, index = real[2]), RootOf(1216*_Z^4+(264*alpha__2^8+408*alpha__2^7-1580*alpha__2^6-6832*alpha__2^5+3508*alpha__2^4+9944*alpha__2^3+9948*alpha__2^2-10752*alpha__2+5204)*_Z^3+(891*alpha__2^8+1652*alpha__2^7-4748*alpha__2^6-24076*alpha__2^5+5354*alpha__2^4+35356*alpha__2^3+29668*alpha__2^2-196*alpha__2+3971)*_Z^2+(506*alpha__2^8+980*alpha__2^7-2264*alpha__2^6-12420*alpha__2^5+3676*alpha__2^4+11596*alpha__2^3+33800*alpha__2^2-7772*alpha__2+1210)*_Z-473*alpha__2^8-720*alpha__2^7+2560*alpha__2^6+10960*alpha__2^5-8034*alpha__2^4-13840*alpha__2^3-9304*alpha__2^2+1104*alpha__2-1133, index = real[2]), RootOf(1216*_Z^4+(264*alpha__3^8+408*alpha__3^7-1580*alpha__3^6-6832*alpha__3^5+3508*alpha__3^4+9944*alpha__3^3+9948*alpha__3^2-10752*alpha__3+5204)*_Z^3+(891*alpha__3^8+1652*alpha__3^7-4748*alpha__3^6-24076*alpha__3^5+5354*alpha__3^4+35356*alpha__3^3+29668*alpha__3^2-196*alpha__3+3971)*_Z^2+(506*alpha__3^8+980*alpha__3^7-2264*alpha__3^6-12420*alpha__3^5+3676*alpha__3^4+11596*alpha__3^3+33800*alpha__3^2-7772*alpha__3+1210)*_Z-473*alpha__3^8-720*alpha__3^7+2560*alpha__3^6+10960*alpha__3^5-8034*alpha__3^4-13840*alpha__3^3-9304*alpha__3^2+1104*alpha__3-1133, index = real[2])}

 

{-0.7765721e-11, -0.40e-16, -0.2e-17}

(1)

`~`[`@`(evala, Minpoly)](bSol, _X)

{-17799961-(10941904462/121)*_X+(61823634144236824/14641)*_X^9-(31748793508955524/14641)*_X^8-(101389427707536/14641)*_X^7+(2187899683524768/14641)*_X^6+(660533278629392/14641)*_X^5-(35195970681077/1331)*_X^4+(4540912173250/1331)*_X^3-(226104907168/1331)*_X^2+_X^36+(562/11)*_X^35+(1306112/1331)*_X^34-(18882494/14641)*_X^33-(1885893201/14641)*_X^32-(8021957456/14641)*_X^31+(128807680096/14641)*_X^30+(601684442192/14641)*_X^29+(136952065956/14641)*_X^28-(7313279407608/14641)*_X^27-(20755313257248/14641)*_X^26-(72279502775080/14641)*_X^25-(235147325265588/14641)*_X^24+(407012808852624/14641)*_X^23-(2003920103008/1331)*_X^22-(2647129453154576/14641)*_X^21-(5329535956015778/14641)*_X^20-(11189597881735324/14641)*_X^19+(18014890583299168/14641)*_X^18-(25692630236542548/14641)*_X^17+(57603516516708946/14641)*_X^16-(875402744452912/121)*_X^15+(36990665431348512/14641)*_X^14+(67887070781490608/14641)*_X^13+(643327218250876/1331)*_X^12-(81888059180050616/14641)*_X^11+(306280599794336/14641)*_X^10}

(2)

`~`[PolynomialTools[MinimalPolynomial]](bSol, _X)

{14641*_X^36+748022*_X^35+14367232*_X^34-18882494*_X^33-1885893201*_X^32-8021957456*_X^31+128807680096*_X^30+601684442192*_X^29+136952065956*_X^28-7313279407608*_X^27-20755313257248*_X^26-72279502775080*_X^25-235147325265588*_X^24+407012808852624*_X^23-22043121133088*_X^22-2647129453154576*_X^21-5329535956015778*_X^20-11189597881735324*_X^19+18014890583299168*_X^18-25692630236542548*_X^17+57603516516708946*_X^16-105923732078802352*_X^15+36990665431348512*_X^14+67887070781490608*_X^13+7076599400759636*_X^12-81888059180050616*_X^11+306280599794336*_X^10+61823634144236824*_X^9-31748793508955524*_X^8-101389427707536*_X^7+2187899683524768*_X^6+660533278629392*_X^5-387155677491847*_X^4+49950033905750*_X^3-2487153978848*_X^2-1323970439902*_X-260609229001}

(3)

factor({{-260609229001-1323970439902*_X+407012808852624*_X^23-22043121133088*_X^22-2647129453154576*_X^21-5329535956015778*_X^20-11189597881735324*_X^19+18014890583299168*_X^18-25692630236542548*_X^17+57603516516708946*_X^16-105923732078802352*_X^15+36990665431348512*_X^14+67887070781490608*_X^13+7076599400759636*_X^12-81888059180050616*_X^11+306280599794336*_X^10+61823634144236824*_X^9-31748793508955524*_X^8-101389427707536*_X^7+2187899683524768*_X^6+660533278629392*_X^5-387155677491847*_X^4+49950033905750*_X^3-2487153978848*_X^2+14641*_X^36+748022*_X^35+14367232*_X^34-18882494*_X^33-1885893201*_X^32-8021957456*_X^31+128807680096*_X^30+601684442192*_X^29+136952065956*_X^28-7313279407608*_X^27-20755313257248*_X^26-72279502775080*_X^25-235147325265588*_X^24}[], {-17799961-(10941904462/121)*_X+(407012808852624/14641)*_X^23-(2003920103008/1331)*_X^22-(2647129453154576/14641)*_X^21-(5329535956015778/14641)*_X^20-(11189597881735324/14641)*_X^19+(18014890583299168/14641)*_X^18-(25692630236542548/14641)*_X^17+(57603516516708946/14641)*_X^16-(875402744452912/121)*_X^15+(36990665431348512/14641)*_X^14+(67887070781490608/14641)*_X^13+(643327218250876/1331)*_X^12-(81888059180050616/14641)*_X^11+(306280599794336/14641)*_X^10+(61823634144236824/14641)*_X^9-(31748793508955524/14641)*_X^8-(101389427707536/14641)*_X^7+(2187899683524768/14641)*_X^6+(660533278629392/14641)*_X^5-(35195970681077/1331)*_X^4+(4540912173250/1331)*_X^3-(226104907168/1331)*_X^2+_X^36+(562/11)*_X^35+(1306112/1331)*_X^34-(18882494/14641)*_X^33-(1885893201/14641)*_X^32-(8021957456/14641)*_X^31+(128807680096/14641)*_X^30+(601684442192/14641)*_X^29+(136952065956/14641)*_X^28-(7313279407608/14641)*_X^27-(20755313257248/14641)*_X^26-(72279502775080/14641)*_X^25-(235147325265588/14641)*_X^24}[]})

{(11*_X^9-47*_X^8+96*_X^7-376*_X^6-370*_X^5-142*_X^4+280*_X^3+64*_X^2-17*_X-11)*(83746429305*_X-163433814*_X^23-1409885474*_X^22+7323055726*_X^21+92878340298*_X^20+291711433585*_X^19-28358008525*_X^18-1146850616945*_X^17+2003142623069*_X^16+7054039060380*_X^15+10860482240404*_X^14+4410674835220*_X^13-23715924119108*_X^12+39935154074341*_X^11-76564178781009*_X^10+246946329497683*_X^9-303627746551159*_X^8+41661161235738*_X^7+181533634595246*_X^6-146573328877410*_X^5+44279227597786*_X^4-3813039868649*_X^3+234521505317*_X^2+1331*_X^27+73689*_X^26+1609349*_X^25+4562111*_X^24+23691748091), (1/14641)*(11*_X^9-47*_X^8+96*_X^7-376*_X^6-370*_X^5-142*_X^4+280*_X^3+64*_X^2-17*_X-11)*(83746429305*_X-163433814*_X^23-1409885474*_X^22+7323055726*_X^21+92878340298*_X^20+291711433585*_X^19-28358008525*_X^18-1146850616945*_X^17+2003142623069*_X^16+7054039060380*_X^15+10860482240404*_X^14+4410674835220*_X^13-23715924119108*_X^12+39935154074341*_X^11-76564178781009*_X^10+246946329497683*_X^9-303627746551159*_X^8+41661161235738*_X^7+181533634595246*_X^6-146573328877410*_X^5+44279227597786*_X^4-3813039868649*_X^3+234521505317*_X^2+1331*_X^27+73689*_X^26+1609349*_X^25+4562111*_X^24+23691748091)}

(4)

``


 

Download minpoly.mw

Isn't the results incorrect? 

Please Wait...