Question: how do i find the sum of a power series

B:=5

N:=1

R:=1/2

x = sum(R^g*product(-Br + 1 + Ng, r = 1 .. g - 1)/(B^g*g!), g = 0 .. infinity)

when i press enter it shows this

R := 1/2

1/2

(1)

B := 5

5

(2)

N := 1

1

(3)

x = sum(R^g*(product(-Br+1+Ng, r = 1 .. g-1))/(B^g*factorial(g)), g = 0 .. infinity)

x = 1/((-Br+1+Ng)*exp((1/10)*Br-1/10-(1/10)*Ng))

(4)

``

Download brn.mw

I need him to show it

x=1.090970406879337658

Please Wait...