Question: How to prove this equality under given conditions?


How to force Maple to prove equality (2) under conditions cond.

 

restart:

# Given
#     0 < u < 1
#     0 < v < 1
#     theta > 1
#
# let F the function defined by:

F := (u, v) -> exp(-((-ln(u))^theta+(-ln(v))^theta)^(1/theta))

proc (u, v) options operator, arrow; exp(-((-ln(u))^theta+(-ln(v))^theta)^(1/theta)) end proc

(1)

# How to prove this equality for any n > 0?

'F(u^(1/n), v^(1/n))^n' = 'F(u, v)'

F(u^(1/n), v^(1/n))^n = F(u, v)

(2)

cond := u > 0, u < 1, v > 0, v < 1, theta > 1, n > 1:

simplify(F(u^(1/n), v^(1/n))^n - F(u, v)) assuming cond;

(exp(-(((-ln(u))^theta+(-ln(v))^theta)*n^(-theta))^(1/theta)))^n-exp(-((-ln(u))^theta+(-ln(v))^theta)^(1/theta))

(3)

 

 

Download Stable.mw


Thanks for your help.

Please Wait...