Question: How to accelerate a nested numeric procedure if it cannot be compiled?

Wolfram's marketing literature states that a compiled function may generate the dates for the years 1 through 5.7 million in a couple of seconds rather than in minutes (comparing to the "uncompiled implementation").
The given function in this link can be translated into Maple language as follows: 

(*
  Note that this is only a mathematical program that outputs some data,
   hence 'Easter(-2, 1)' will never return real Gregorian Easter dates!
*)
Easter:=proc(BEGIN::integer[4],END::integer[4],$)::Array(BEGIN..END,[integer[1..12],integer[1..31]]);# the parent function
	description "https://www.wolfram.com/language/12/code-compilation/compute-the-date-of-easter.html";
	local computus::procedure[[integer[1 .. 12], integer[1 .. 31]]](integer):=proc(Year::integer,` $`)::[integer[1..12],integer[1..31]];# the child function
		options threadsafe;
		local a::nonnegint,b::integer,c::nonnegint,d::integer,e::nonnegint,f::integer,g::nonnegint,h::nonnegint,i::nonnegint,j::nonnegint,k::nonnegint,Month::integer[1..12],Day::integer[1..31];
		(* For compatibility, when `Year` is nonpositive, the command `iquo` must be replaced with slower `floor`. *)
		if Year<=0 then
			a,b,c:=Year mod 19,floor(Year/100),Year mod 100;
			d,e,f:=floor(b/4),b mod 4,floor((8*b+13)/25);
			g,h,i:=19*a+b-d-f+15 mod 30,floor(c/4),c mod 4;
			j:=floor((a+11*g)/319);k:=2*e+2*h-i-g+j+32 mod 7;
			Month:=floor((g-j+k+90)/25);Day:=g-j+k+Month+19 mod 32
		else
			a,b,c:=irem(Year,19),iquo(Year,100),irem(Year,100):
			d,e,f:=iquo(b,4),irem(b,4),iquo(8*b+13,25);
			g,h,i:=irem(19*a+b-d-f+15,30),iquo(c,4),irem(c,4);
			j:=iquo(a+11*g,319);k:=irem(2*e+2*h-i-g+j+32,7);
			Month:=iquo(g-j+k+90,25);Day:=irem(g-j+k+Month+19,32)
		fi;
		[Month,Day]
	end;
	Array(BEGIN..END,computus)
end:

However, as "no nested procedures can be translated" to optimized native machine code (cf. compile procedure), executing Easter(1, 5700000) has to take at least two minutes

Is there some workaround that can provide improved performance for such a numerical procedure that contains a nested procedure? In other words, is it possible to produce the `result` (without modifying the algorithm) in two seconds in modern Maple as that Wolfram marketing literature claims?

Please Wait...