Question: on solution to ode using Laplace transform when RHS is Dirac

I was trying this ode with Maple

Do you agree this solution is not correct by Maple?

restart;

ode:=diff(y(t),t)+y(t)=Dirac(t);
ic:=y(0)=1;
sol:=dsolve([ode,ic],y(t),method='laplace');

It gives  y(t) = 2*exp(-t)

But from the discussion in the above link we see this is wrong solution. Maple also does not verify it:

odetest(sol,[ode,y(0)=1])

[-Dirac(t), -1]

Would this be considered a bug I should report or not? Note this result is only when using Laplace method. The default method gives better solution.

ode:=diff(y(t),t)+y(t)=Dirac(t);
ic:=y(0)=1;
sol:=dsolve([ode,ic],y(t));
odetest(sol,[ode,y(0)=1])

 

Maple 2023.2.1

Please Wait...