> |
restart;
_quartic := RootOf(-8*(rho + 1)^4*_Z^4 + 12*(rho + 1)^3*Gamma*(rho - 1)*_Z^3 - 5*(rho + 1)^2*(-4/5 + Gamma^2*rho^2 + 2*(-2/5 - Gamma^2)*rho + Gamma^2)*_Z^2 - 4*(rho + 1)*Gamma*(rho^2 - 1)*_Z + Gamma^2*(rho + 1)*(rho - 1)^2);
convert(_quartic,radical):
f(Gamma,rho) := simplify(%):
|

|
(1) |
Synthetic representation of derivatives
> |
der1_Gamma := diff(_quartic, Gamma):
der1_rho := diff(_quartic, rho):
Diff('f(Gamma,rho)', Gamma) = collect~(normal(eval(der1_Gamma, _quartic = 'f(Gamma,rho)')), 'f(Gamma,rho)');
Diff('f(Gamma,rho)', rho) = collect~(normal(eval(der1_rho, _quartic = 'f(Gamma,rho)')), 'f(Gamma,rho)');
der2_Gamma := diff(der1_Gamma, Gamma):
der2_rho := diff(der1_rho, rho):
Diff('f(Gamma,rho)', Gamma$2) = collect~(normal(eval(der2_Gamma, _quartic = 'f(Gamma,rho)')), 'f(Gamma,rho)');
Diff('f(Gamma,rho)', rho$2) = collect~(normal(eval(der2_rho, _quartic = 'f(Gamma,rho)')), 'f(Gamma,rho)');
|

|
(2) |
Signs of derivatives: fdiff (numerical function evaluations of the RootOf) vs. D[]()
> |
_quartic := RootOf(-8*(rho + 1)^4*_Z^4 + 12*(rho + 1)^3*Gamma*(rho - 1)*_Z^3 - 5*(rho + 1)^2*(-4/5 + Gamma^2*rho^2 + 2*(-2/5 - Gamma^2)*rho + Gamma^2)*_Z^2 - 4*(rho + 1)*Gamma*(rho^2 - 1)*_Z + Gamma^2*(rho + 1)*(rho - 1)^2):
|
> |
plot3d(_quartic, Gamma=0..10, rho=-1..+1, labels=[Gamma,rho,Lambda(Gamma,rho)],axesfont=["helvetica","roman",20],labelfont=["helvetica","roman",30]);
|
Define it as a f and test it for Gamma=1 and rho=0.5
> |
f := (Gamma,rho) -> RootOf(-8*(rho + 1)^4*_Z^4 + 12*(rho + 1)^3*Gamma*(rho - 1)*_Z^3 - 5*(rho + 1)^2*(-4/5 + Gamma^2*rho^2 + 2*(-2/5 - Gamma^2)*rho + Gamma^2)*_Z^2 - 4*(rho + 1)*Gamma*(rho^2 - 1)*_Z + Gamma^2*(rho + 1)*(rho - 1)^2):
evalf(f(1.0,0.5));
|

|
(3) |
Value at zero:
> |
f(0,0):
allvalues(%):
fl := select(is, [allvalues(f(0,0))], positive)[];evalf(%);
|

|
(4) |
Value at infinity (commented out because too slow)
> |
#limit(f(x,y), {x = infinity, y = 0}):
#fh := select(is, [allvalues(%)], positive)[];evalf(%);
|
Derivative at zero:
> |
allvalues([D[1](f)(0,0)]):
Dfl := %[1][];
|

|
(5) |
Derivative at a point, evaluated, vs numerical derivative at a point:
> |
D[1](f)(1,0.5):
evalf(%);
fdiff(f(x,y), x, {x = 1.0, y = 0.5});
fdiff(f, [1], [1.0,0.5]);
D[2](f)(1,0.5):
evalf(%);
fdiff(f(x,y), y, {x = 1.0, y = 0.5});
fdiff(f, [2], [1.0,0.5]);
|

|
(6) |
Can make a function out of fdiff
> |
fDfG := (Gamma,rho) -> fdiff(f, [1], [Gamma,rho]);
fDfr := (Gamma,rho) -> fdiff(f, [2], [Gamma,rho]);
|
![proc (Gamma, rho) options operator, arrow; fdiff(f, [2], [Gamma, rho]) end proc](/view.aspx?sf=238284_question/77dfdece5c12d0e8d3011a76ffba5d9c.gif)
|
(7) |
Check for numerical values close to thresholds:
> |
Digits := 15:
evalf('D[1]'(f)(0.1e-8,0.5));fdiff(f, [1], [0.1e-8,0.5]);
evalf('D[1]'(f)(0.1e-7,0.5));fdiff(f, [1], [0.1e-7,0.5]);
evalf('D[1]'(f)(0.1e-5,0.5));fdiff(f, [1], [0.1e-5,0.5]);
evalf('D[1]'(f)(0.00001,0.5));fdiff(f, [1], [0.00001,0.5]);
evalf('D[1]'(f)(0.001,0.5));fdiff(f, [1], [0.001,0.5]);
evalf('D[2]'(f)(1,-0.99));fdiff(f, [2], [1,-0.99]);
evalf('D[2]'(f)(1,-0.97));fdiff(f, [2], [1,-0.97]);
evalf('D[2]'(f)(1,-0.1));fdiff(f, [2], [1,-0.1]);
evalf('D[2]'(f)(1,0.98));fdiff(f, [2], [1,0.98]);
evalf('D[2]'(f)(1,-0.99));fdiff(f, [2], [1,-0.99]);
|

|
(8) |
Compare with D (vertical range here to prevent effect of large values from fdiff near zero):
> |
d1G := plot3d([D[1](f), fDfG], 0..10, -0.95..+0.95, view=-0.3..0, color = [red, blue]);
d1r := plot3d([D[2](f), fDfr], 0..10, -0.95..+0.95, color = [red, blue]);
|
Second derivatives:
> |
evalf('D[1,1]'(f)(1.0,0.5));
fdiff(f, [1, 1], [1.0,0.5]);
evalf('D[2,2]'(f)(1.0,0.5));
fdiff(f, [2, 2], [1.0,0.5]);
fD2fG := (Gamma,rho) -> fdiff(f, [1, 1], [Gamma]);
fD2fr := (Gamma,rho) -> fdiff(f, [2, 2], [Gamma]);
|
![proc (Gamma, rho) options operator, arrow; fdiff(f, [2, 2], [Gamma]) end proc](/view.aspx?sf=238284_question/ba98d6abbbdb49ee6a15e7d1a4bda88c.gif)
|
(9) |
> |
d2G:= plot3d([D[1,1](f), fD2fG], 0..10, -0.9..+0.9, color = [red, blue]);
d2r:= plot3d([D[2,2](f), fD2fr], 0..10, -0.9..+0.9, color = [red, blue]);
|
> |
d1d2G := plot3d([fDfG, fD2fG], 0.1e-6 .. 10, -0.98 .. +0.98, axesfont=["helvetica","roman",20],labelfont=["helvetica","roman",30], size=[1000,1000]);
d1d2r := plot3d([fDfr, fD2fr], 0.1e-6 .. 10, -0.98 .. +0.98, axesfont=["helvetica","roman",20],labelfont=["helvetica","roman",30], size=[1000,1000]);
|
|