Question: How determine the complex region for 3D plot ?

restart;

local gamma;

gamma

(1)

with(Plot)

 

params := {alpha = 2.5, k = 3, w = 2, beta[3] = 3, beta[4] = 1.7,theta=0,gamma=1};

{alpha = 2.5, gamma = 1, k = 3, theta = 0, w = 2, beta[3] = 3, beta[4] = 1.7}

(2)

xi := sqrt(-1/(72*alpha*beta[4]+72*gamma*beta[4]))*(2*alpha*k*t+x)

(-1/(72*alpha*beta[4]+72*gamma*beta[4]))^(1/2)*(2*alpha*k*t+x)

(3)

 

sol1 := [U(xi), -k*x -(9*alpha*k^2*beta[4] + 2*beta[3]^2)/(9*beta[4])*t + theta];

[U((-1/(72*alpha*beta[4]+72*gamma*beta[4]))^(1/2)*(2*alpha*k*t+x)), -k*x-(1/9)*(9*alpha*k^2*beta[4]+2*beta[3]^2)*t/beta[4]+theta]

(4)

 

sol2 := eval(sol1, U(xi) = -beta[3]/(3*beta[4]) + beta[3]*sinh(xi)/(6*beta[4]*cosh(xi)) + beta[3]*cosh(xi)/(6*beta[4]*sinh(xi)));

[-(1/3)*beta[3]/beta[4]+(1/6)*beta[3]*sinh((-1/(72*alpha*beta[4]+72*gamma*beta[4]))^(1/2)*(2*alpha*k*t+x))/(beta[4]*cosh((-1/(72*alpha*beta[4]+72*gamma*beta[4]))^(1/2)*(2*alpha*k*t+x)))+(1/6)*beta[3]*cosh((-1/(72*alpha*beta[4]+72*gamma*beta[4]))^(1/2)*(2*alpha*k*t+x))/(beta[4]*sinh((-1/(72*alpha*beta[4]+72*gamma*beta[4]))^(1/2)*(2*alpha*k*t+x))), -k*x-(1/9)*(9*alpha*k^2*beta[4]+2*beta[3]^2)*t/beta[4]+theta]

(5)

 

solnum :=eval(sol2, params);

[-.5882352940+(.2941176471*I)*sin(.7247137946*t+0.4831425297e-1*x)/cos(.7247137946*t+0.4831425297e-1*x)-(.2941176471*I)*cos(.7247137946*t+0.4831425297e-1*x)/sin(.7247137946*t+0.4831425297e-1*x), -3*x-23.67647059*t]

(6)

plots:-complexplot3d(solnum, x = -50.. 50, t = -50..50);

Warning, unable to evaluate the function to numeric values in the region; complex values were detected

 

 

NULL


if there is any other way for graph please share with me

Download complexplot3d.mw

Please Wait...