Question: Reduced Involutive Form

Dear Maple Community,

I come to you with a question about the reduced involutive form (rif) package. Namely, I decided to try the classic example from the "LONG GUIDE TO THE STANDARD FORM PACKAGE", which dates back to 1993. Here is the link to the complete documentation:

https://wayback.cecm.sfu.ca/~wittkopf/files/standard_manual.txt

So, the example is the following:

2.1 SIMPLE EXAMPLES

EXAMPLE A

Consider the system of nonlinear PDEs:       

y Zxxx - x Zxyy  =  Zyy - y Zy

                        2     2    2
2 y x Zxxx Zxyy + x Zxxx + x y Zxyy  =  0

                  2    2
y Zxyy - x W + 2 x  y Z  =  0

                 2    2
Zyy - y Zy  + 2 x  y W  =  x W

where the dependent variables W and Z are functions of the
independent variables x and y, and Zxxx denotes the third partial
derivative of Z with respect to x etc.

After making computations back in 1993 with Maple V, they obtain the following involutive form:

In our original notation the (considerably) simplified system is:
                                            2
  Zxxx = 0, Zxy = 0, Zyy = y Zy, W = 2 x y Z

So, I tried the same system of PDEs in the modern Maple and the modern rifsimp() command. You can find the result below:

demo_question.mw

The problem is that nowadays [Maple 2022.1] , I get only the trivial solution: z = 0 and w = 0.

Could someone clarify, please, where the truth is and what am I doing wrong?

Thanks a lot in advance for any help and clarification!

Best regards,

Dr. Denys D.
 

restart:

with(DETools):

PDE1 := y*diff(z(x,y), x$3) - x*diff(z(x,y),x,y$2) = diff(z(x,y),y$2) - y*diff(z(x,y), y);

y*(diff(diff(diff(z(x, y), x), x), x))-x*(diff(diff(diff(z(x, y), x), y), y)) = diff(diff(z(x, y), y), y)-y*(diff(z(x, y), y))

(1)

PDE2 := 2*x*y*diff(z(x,y),x$3)*diff(z(x,y),x,y$2) + x*(diff(z(x,y),x$3))^2 + x*y^2*(diff(z(x,y),x,y$2))^2 = 0;

2*x*y*(diff(diff(diff(z(x, y), x), x), x))*(diff(diff(diff(z(x, y), x), y), y))+x*(diff(diff(diff(z(x, y), x), x), x))^2+x*y^2*(diff(diff(diff(z(x, y), x), y), y))^2 = 0

(2)

PDE3 := y*diff(z(x,y),x,y$2) - x*w(x,y) + 2*x^2*y*z(x,y)^2 = 0;

y*(diff(diff(diff(z(x, y), x), y), y))-x*w(x, y)+2*x^2*y*z(x, y)^2 = 0

(3)

PDE4 := diff(z(x,y), y$2) - y*diff(z(x,y),y) + 2*x^2*y*w(x,y)^2 = x*w(x,y);

diff(diff(z(x, y), y), y)-y*(diff(z(x, y), y))+2*x^2*y*w(x, y)^2 = x*w(x, y)

(4)

sys := [PDE1, PDE2, PDE3, PDE4]:

rif := rifsimp(sys, [[w], [z]], indep = [x,y]);

table( [( Case ) = [[z(x, y)*(8*z(x, y)^2*y^2*x^2-1) = 0, diff(z(x, y), x), "false split"]], ( Solved ) = [w(x, y) = 0, z(x, y) = 0] ] )

(5)
 

 

Please Wait...