Question: Finding and plotting the 6th roots of unity

I was reading a book on complex analysis, and I tried to answer some questions like "Find and plot the sixth roots of unity on Maple."  I tried the following code, which works. Is there any other way to solve and plot the same question?

with(plots); interface(imaginaryunit = 'I'); s := [seq(exp(2*I*Pi*k*(1/6)), k = 0 .. 5)]; X := [seq(Re(s[k]), k = 1 .. 6)]; Y := [seq(Im(s[k]), k = 1 .. 6)]

[1, 1/2+((1/2)*I)*3^(1/2), -1/2+((1/2)*I)*3^(1/2), -1, -1/2-((1/2)*I)*3^(1/2), 1/2-((1/2)*I)*3^(1/2)]

 

[1, 1/2, -1/2, -1, -1/2, 1/2]

 

[0, (1/2)*3^(1/2), (1/2)*3^(1/2), 0, -(1/2)*3^(1/2), -(1/2)*3^(1/2)]

(1)

UnitCircle := plot([cos(t), sin(t), t = 0 .. 2*Pi], color = gray, linestyle = dash); RootsPlot := pointplot([X, Y], symbol = solidcircle, color = blue, symbolsize = 10); display(UnitCircle, RootsPlot, scaling = constrained, title = "6th Roots of Unity")

 

NULL


 

Download 6th_roots_of_unity.mw

Please Wait...