Question: Help with Solving ODE and Representing ± Sign in the Solution

I tried solving this ODE, but my result is very different from the expected one. How can I correctly obtain the solution? Also, is there a way to include both the positive and negative signs (±) in the equation so that the final result reflects both possibilities?

restart

with(PDEtools)

with(LinearAlgebra)

with(Physics)

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

declare(Omega(x, t)); declare(U(xi)); declare(u(x, y, z, t)); declare(Q(xi)); declare(V(xi))

Omega(x, t)*`will now be displayed as`*Omega

 

U(xi)*`will now be displayed as`*U

 

u(x, y, z, t)*`will now be displayed as`*u

 

Q(xi)*`will now be displayed as`*Q

 

V(xi)*`will now be displayed as`*V

(2)

``

ode := f*g^3*(diff(diff(U(xi), xi), xi))-4*f*p*U(xi)-6*k*l*U(xi)-f^3*g*(diff(diff(U(xi), xi), xi))+6*f*g*U(xi)^2 = 0

f*g^3*(diff(diff(U(xi), xi), xi))-4*f*p*U(xi)-6*k*l*U(xi)-f^3*g*(diff(diff(U(xi), xi), xi))+6*f*g*U(xi)^2 = 0

(3)

S := (diff(G(xi), xi))^2-r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2) = 0

(diff(G(xi), xi))^2-r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2) = 0

(4)

S1 := dsolve(S, G(xi))

G(xi) = (1/2)*(-b+(-4*a*l+b^2)^(1/2))/l, G(xi) = -(1/2)*(b+(-4*a*l+b^2)^(1/2))/l, G(xi) = -4*a*exp(c__1*r*a^(1/2))/(exp(xi*r*a^(1/2))*(4*a*l-b^2+2*b*exp(c__1*r*a^(1/2))/exp(xi*r*a^(1/2))-(exp(c__1*r*a^(1/2)))^2/(exp(xi*r*a^(1/2)))^2)), G(xi) = -4*a*exp(xi*r*a^(1/2))/(exp(c__1*r*a^(1/2))*(4*a*l-b^2+2*b*exp(xi*r*a^(1/2))/exp(c__1*r*a^(1/2))-(exp(xi*r*a^(1/2)))^2/(exp(c__1*r*a^(1/2)))^2))

(5)

S2 := S1[3]

G(xi) = -4*a*exp(c__1*r*a^(1/2))/(exp(xi*r*a^(1/2))*(4*a*l-b^2+2*b*exp(c__1*r*a^(1/2))/exp(xi*r*a^(1/2))-(exp(c__1*r*a^(1/2)))^2/(exp(xi*r*a^(1/2)))^2))

(6)

normal(G(xi) = -4*a*exp(c__1*r*a^(1/2))/(exp(xi*r*a^(1/2))*(4*a*l-b^2+2*b*exp(c__1*r*a^(1/2))/exp(xi*r*a^(1/2))-(exp(c__1*r*a^(1/2)))^2/(exp(xi*r*a^(1/2)))^2)), ':-expanded')

G(xi) = 4*a*exp(c__1*r*a^(1/2))*exp(xi*r*a^(1/2))/(-4*a*l*(exp(xi*r*a^(1/2)))^2+b^2*(exp(xi*r*a^(1/2)))^2-2*b*exp(c__1*r*a^(1/2))*exp(xi*r*a^(1/2))+(exp(c__1*r*a^(1/2)))^2)

(7)

simplify(G(xi) = 4*a*exp(c__1*r*a^(1/2))*exp(xi*r*a^(1/2))/(-4*a*l*(exp(xi*r*a^(1/2)))^2+b^2*(exp(xi*r*a^(1/2)))^2-2*b*exp(c__1*r*a^(1/2))*exp(xi*r*a^(1/2))+(exp(c__1*r*a^(1/2)))^2))

G(xi) = -4*a*exp(a^(1/2)*r*(c__1+xi))/(4*a*l*exp(2*xi*r*a^(1/2))-b^2*exp(2*xi*r*a^(1/2))+2*b*exp(a^(1/2)*r*(c__1+xi))-exp(2*c__1*r*a^(1/2)))

(8)

convert(%, trig)

G(xi) = -4*a*(cosh(a^(1/2)*r*(c__1+xi))+sinh(a^(1/2)*r*(c__1+xi)))/(4*a*l*(cosh(2*xi*r*a^(1/2))+sinh(2*xi*r*a^(1/2)))-b^2*(cosh(2*xi*r*a^(1/2))+sinh(2*xi*r*a^(1/2)))+2*b*(cosh(a^(1/2)*r*(c__1+xi))+sinh(a^(1/2)*r*(c__1+xi)))-cosh(2*c__1*r*a^(1/2))-sinh(2*c__1*r*a^(1/2)))

(9)

convert(S1[3], trig)

G(xi) = -4*a*(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))/((cosh(xi*r*a^(1/2))+sinh(xi*r*a^(1/2)))*(4*a*l-b^2+2*b*(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))/(cosh(xi*r*a^(1/2))+sinh(xi*r*a^(1/2)))-(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))^2/(cosh(xi*r*a^(1/2))+sinh(xi*r*a^(1/2)))^2))

(10)

simplify(G(xi) = -4*a*(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))/((cosh(xi*r*a^(1/2))+sinh(xi*r*a^(1/2)))*(4*a*l-b^2+2*b*(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))/(cosh(xi*r*a^(1/2))+sinh(xi*r*a^(1/2)))-(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))^2/(cosh(xi*r*a^(1/2))+sinh(xi*r*a^(1/2)))^2)))

G(xi) = -4*a*(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))*(cosh(xi*r*a^(1/2))+sinh(xi*r*a^(1/2)))/((4*a*l-b^2)*cosh(xi*r*a^(1/2))^2+((8*a*l-2*b^2)*sinh(xi*r*a^(1/2))+2*b*(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2))))*cosh(xi*r*a^(1/2))+(4*a*l-b^2)*sinh(xi*r*a^(1/2))^2+2*b*(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))*sinh(xi*r*a^(1/2))-(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))^2)

(11)
   

Download tt.mw

Please Wait...