MaplePrimes Questions

x1a+x2b+x3c+x4d=0

y1a+y2b+y3c+y4d=0

z1a+z2b+z3c+z4d=0

t1a+t2b+t3c+t4d=0

how this equations change to matrix? like:

Matrix(4, 4, [x1, x2, x3, x4, y1, y2, y3,y4, z1,z2,z3,z4,t1,t2,t3,t4]).Matrix(4, 1, [a,b,c,d])=Matrix(4 ,1, [0,0,0,0])

 

I have been unable to successfully open a text file for writing in MAPLEPLAYER, whether it is requested in the startup code section or via a document tools button.  Is there a way to write to a file in MAPLEPLAYER?  It returns a "no write access" statement.

The write works perfectly in MAPLE 2015.1

MRB

LE.2a.E.LGM.mwHi, my this programme is executing for linear part but does'nt show the proper results for non linear,plz tell me appropriate code

Dear All

My question may be quite simple for  community of experts in Maple prgramming, but this problem is one of most disturbing problem for last many months. My problem is how to list all coefficient in differential expression of the type

Hi, I'm trying to solve without success numerically the following system of 15 nonlinear equations. Could anyone help, please? Thanks
 

restart

n := 0.27231149e-1:

x := 0.5116034663e-1:

F := .1561816797:

eq1 := sigma*C0 = pgamma*W*H1*(1-E0-L0)/(1+n):

eq2 := sigma*C1 = W*H1*(1-L1):

eq3 := (1+R)*C0 = (1+rho)*exp(x)*C1:

eq4 := (1+R)*C1 = (1+rho)*exp(x)*C2:

eq5 := C1 = (1+phi)*C0:

eq6 := pgamma*L0+pgamma*(1+(1+n)*F/(pgamma*W*H1))*E0+L1 = (1+R)*(1+(1+n)*F/(pgamma*W*H1))/(ppsi*exp(x))-pgamma*(1+(1+n)*F/(pgamma*W*H1))/ppsi:

eq7 := 1 = pgamma*(1+ppsi*E0)/(1+n):

eq8 := exp(x)*A1 = pgamma*W*L0*H1/(1+n)+Epsilon1-C0-F*E0:

eq9 := exp(x)*A2 = W*L1*H1+(1+R)*A1-C1-(1+n)*Epsilon1:

eq10 := (1+R)*A2 = C2:

eq11 := Y = H^alpha*K^(1-alpha):

eq12 := alpha*Y = W*H:

eq13 := (1-alpha)*Y = (1+R)*K:

eq14 := K = A1/(1+n)+A2/(1+n)^2:

eq15 := H = (pgamma*L0+L1)*H1/(1+n):

eq := {eq1, eq2, eq3, eq4, eq5, eq6, eq7, eq8, eq9, eq10, eq11, eq12, eq13, eq14, eq15}:

vars := {A1, A2, C0, C1, C2, E0, H, H1, K, L0, L1, R, W, Y, Epsilon1}:

NULL

fsolve(eq, vars); 1; assign(%)

fsolve({1 = .6865382886+.1072247031*E0, C1 = 1.475639047*C0, H = .9734907289*(.7052335150*L0+L1)*H1, K = .9734907289*A1+.9476841993*A2, Y = H^.6874443*K^.3125557, (1+R)*A2 = C2, (1+R)*C0 = 1.121850394*C1, (1+R)*C1 = 1.121850394*C2, 1.052491643*A1 = .6865382886*W*L0*H1+Epsilon1-C0-.1561816797*E0, 1.052491643*A2 = W*L1*H1+(1+R)*A1-C1-1.027231149*Epsilon1, 5.171201776*C0 = .6865382886*W*H1*(1-E0-L0), 5.171201776*C1 = W*H1*(1-L1), .3125557*Y = (1+R)*K, .6874443*Y = W*H, .7052335150*L0+.7052335150*(1+.2274915796/(W*H1))*E0+L1 = 6.083468374*(1+R)*(1+.2274915796/(W*H1))-4.515468884-1.027231149/(W*H1)}, {A1, A2, C0, C1, C2, E0, H, H1, K, L0, L1, R, W, Y, Epsilon1})

(1)

``

 

Download DDGE.mw

Could someone explain what are the main (functional) differences between professional and personal Maple editions for 2845$ and 299$ respectively?

Tx, Andras

If I store plot directions in a name, the output of that assignment is, annoyingly, a thumbnail plot. Without a way to turn that behavior off, it takes up space and is annoying. However, even more annoying is the fact that, if one enters the plot name alone in a succeeding statement in the same execution group, the plot is produced only as a thumbnail. To produce a standard size plot one has to use display(  ) along with an explicit size parameter.

Strangely enough, if the plot name alone is used in a separate execution group, a normal size plot is produced.

Is there no way to control these annoying behaviors globally?

Hi, I hope to use symbol A, B, directly to get C derivation, without using elements forms of matrix, as shown below.

How to achieve this? 

Thank you.

 

 

> coth;
                                    coth
> restart;
> c := 0;
                                      0
> w := -2*mu;
                                    -2 mu
> a[-1] := 0;
                                      0
> a[0] := mu*lambda*sqrt(-6*a);
                                            (1/2)
                            mu lambda (-6 a)     
> a[1] := (6*(mu*lambda^2+1))/sqrt(-6*a);
                               /         2    \
                             6 \mu lambda  + 1/
                             ------------------
                                      (1/2)    
                                (-6 a)         
> b[-1] := 0;
                                      0
> b[0] := 0;
                                      0
> b[1] := 0;
                                      0
> xi := x+w*t;
                                 x - 2 mu t
> P := sqrt(-mu)*coth(A+sqrt(-mu)*xi);
                     (1/2)     /         (1/2)             \
                (-mu)      coth\A + (-mu)      (x - 2 mu t)/
> u := a[0]+a[1]*P/(1+lambda*P)+a[-1]*(1+lambda*P)/P+b[0]*sqrt(sigma*(1+P^2/mu))/P+b[1]*sqrt(sigma*(1+P^2/mu))+b[-1]*sqrt(sigma*(1+P^2/mu))/P^2;
                 (1/2)
 mu lambda (-6 a)     

           /         2    \      (1/2)     /         (1/2)             \   
         6 \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/   
    + ---------------------------------------------------------------------
            (1/2) /                (1/2)     /         (1/2)             \\
      (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//
> Diff(u, t)+a*u^2*(Diff(u, x))+Diff(u, `$`(x, 3));
/    /                     
| d  |                (1/2)
|--- |mu lambda (-6 a)     
| dt |                     
\    \                     

          /         2    \      (1/2)     /         (1/2)             \   \\     /          
        6 \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/   ||     |          
   + ---------------------------------------------------------------------|| + a |mu lambda
           (1/2) /                (1/2)     /         (1/2)             \\||     |          
     (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)////     \          

        (1/2)
  (-6 a)     

          /         2    \      (1/2)     /         (1/2)             \   \   
        6 \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/   |   
   + ---------------------------------------------------------------------|^2
           (1/2) /                (1/2)     /         (1/2)             \\|   
     (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)///   

  /    /                     
  | d  |                (1/2)
  |--- |mu lambda (-6 a)     
  | dx |                     
  \    \                     

          /         2    \      (1/2)     /         (1/2)             \   \\   
        6 \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/   ||   
   + ---------------------------------------------------------------------|| +
           (1/2) /                (1/2)     /         (1/2)             \\||   
     (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)////   

  / 3 /                     
  |d  |                (1/2)
  |-- |mu lambda (-6 a)     
  |   |                     
  \   \                     

          /         2    \      (1/2)     /         (1/2)             \   \\
        6 \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/   ||
   + ---------------------------------------------------------------------||
           (1/2) /                (1/2)     /         (1/2)             \\||
     (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)////
> value(%);
                          /                                     2\      
     /         2    \   2 |        /         (1/2)             \ |      
  12 \mu lambda  + 1/ mu  \1 - coth\A + (-mu)      (x - 2 mu t)/ /      
--------------------------------------------------------------------- -
      (1/2) /                (1/2)     /         (1/2)             \\   
(-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//   

                                                                         /   
                                    1                                    |   
  ---------------------------------------------------------------------- \12
                                                                       2     
        (1/2) /                (1/2)     /         (1/2)             \\      
  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//      

                                                                           /
  /         2    \      (1/2)     /         (1/2)             \          2 |
  \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/ lambda mu  \1

                                      2\\     /                     
         /         (1/2)             \ ||     |                (1/2)
   - coth\A + (-mu)      (x - 2 mu t)/ // + a |mu lambda (-6 a)     
                                              |                     
                                              \                     

          /         2    \      (1/2)     /         (1/2)             \   \   
        6 \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/   |   
   + ---------------------------------------------------------------------|^2
           (1/2) /                (1/2)     /         (1/2)             \\|   
     (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)///   

  /                           /                                     2\       
  |       /         2    \    |        /         (1/2)             \ |       
  |     6 \mu lambda  + 1/ mu \1 - coth\A + (-mu)      (x - 2 mu t)/ /       
  |- --------------------------------------------------------------------- +
  |        (1/2) /                (1/2)     /         (1/2)             \\   
  |  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//   
  \                                                                          

                                                                         /      
                                    1                                    |  /   
  ---------------------------------------------------------------------- \6 \mu
                                                                       2        
        (1/2) /                (1/2)     /         (1/2)             \\         
  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//         

                                                                      /
        2    \      (1/2)     /         (1/2)             \           |
  lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/ lambda mu \1

                                         \
                                      2\\|
         /         (1/2)             \ |||
   - coth\A + (-mu)      (x - 2 mu t)/ //|
                                         |
                                         |
                                         /

                                                                       2     
                               /                                     2\      
          /         2    \   2 |        /         (1/2)             \ |      
       12 \mu lambda  + 1/ mu  \1 - coth\A + (-mu)      (x - 2 mu t)/ /      
   - --------------------------------------------------------------------- +
           (1/2) /                (1/2)     /         (1/2)             \\   
     (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//   

                                                                        /       
                                    1                                   |   /   
  --------------------------------------------------------------------- \24 \mu
        (1/2) /                (1/2)     /         (1/2)             \\         
  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//         

                                                    2 /
        2    \   2     /         (1/2)             \  |
  lambda  + 1/ mu  coth\A + (-mu)      (x - 2 mu t)/  \1

                                      2\\   
         /         (1/2)             \ ||   
   - coth\A + (-mu)      (x - 2 mu t)/ // +

                                                                         /   
                                                                         |   
                                    1                                    |   
  ---------------------------------------------------------------------- \84
                                                                       2     
        (1/2) /                (1/2)     /         (1/2)             \\      
  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//      

  /         2    \   2     /         (1/2)             \
  \mu lambda  + 1/ mu  coth\A + (-mu)      (x - 2 mu t)/

                                          2                  \
  /                                     2\                   |
  |        /         (1/2)             \ |       (1/2)       |
  \1 - coth\A + (-mu)      (x - 2 mu t)/ /  (-mu)      lambda/

                                                                     3           
                             /                                     2\            
        /         2    \   3 |        /         (1/2)             \ |        2   
     36 \mu lambda  + 1/ mu  \1 - coth\A + (-mu)      (x - 2 mu t)/ /  lambda    
   - ------------------------------------------------------------------------- +
                                                                           3     
            (1/2) /                (1/2)     /         (1/2)             \\      
      (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//      

                                                                         /   
                                                                         |   
                                    1                                    |   
  ---------------------------------------------------------------------- \36
                                                                       4     
        (1/2) /                (1/2)     /         (1/2)             \\      
  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//      

  /         2    \      (1/2)     /         (1/2)             \       3   3
  \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/ lambda  mu  

                                          3\   
  /                                     2\ |   
  |        /         (1/2)             \ | |   
  \1 - coth\A + (-mu)      (x - 2 mu t)/ / / +

                                                                         /   
                                                                         |   
                                    1                                    |   
  ---------------------------------------------------------------------- \72
                                                                       3     
        (1/2) /                (1/2)     /         (1/2)             \\      
  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//      

                                                        2         
  /         2    \   3     /         (1/2)             \        2
  \mu lambda  + 1/ mu  coth\A + (-mu)      (x - 2 mu t)/  lambda  

                                          2\   
  /                                     2\ |   
  |        /         (1/2)             \ | |   
  \1 - coth\A + (-mu)      (x - 2 mu t)/ / / -

                                                                         /   
                                    1                                    |   
  ---------------------------------------------------------------------- \24
                                                                       2     
        (1/2) /                (1/2)     /         (1/2)             \\      
  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//      

                                                        3        /
  /         2    \   2     /         (1/2)             \         |
  \mu lambda  + 1/ mu  coth\A + (-mu)      (x - 2 mu t)/  lambda \1

                                      2\           \
         /         (1/2)             \ |      (1/2)|
   - coth\A + (-mu)      (x - 2 mu t)/ / (-mu)     /
> simplify(%);
Error, (in simplify/tools/_zn) too many levels of recursion
>
>
>
>
pls help

I'm not sure why im getting a complex solution for evalf(h(-1/2)). Posted screenshot here:

http://prntscr.com/8abmta

The answer should be positive 6*2^(2/3) ≈ 9.52

 The computer returns

h(-1/2) =

=

The problem is that evalf((-1)^(1/3)) you get 0.500 + .866I

Is there no way to evaluate a second derivative of a real valued function which has a fractional exponent without receiving complex results? I don't have the time to look at each function and try to figure out what went wrong. I want to plug in any x value into a function defined for all reals and get a real result.

I tried  assume(x , 'real' ) , that did not do anything.

 

    

hi, I just want to calculate Adomian's polynomial but does not got  desire result,plz helpADMP.mw

hi .how i can solve nonlinear equation with unknown prameter omega as below

thanksfrekans.mw

Hi All,

 

I have o problem with simplify. A variable cp1r has been assumed to be positive. Why simplify still has csgn(cp1r) for it? Here is my code:

tmp := subs(cp1t(t)=cp1r, cp2t(t)=cp2r, Ca[2]);
1 / 2 2
----------- |-cp2r sin(x[1]) sin(x[7]) cp1r
2 2 |
cp1r cp2r |
\

2
+ 2 cp2r sin(x[1]) cos(x[1]) cos(x[7]) sin(x[7]) cp1r +

1 / 2 2 /
-------------- \cp2r cos(x[1]) cos(x[7]) sin(x[7]) \
(1/2)
/ 2\
2 \cp1r /
2 \\\
-2 cos(x[1]) cos(x[7]) sin(x[1]) + 2 sin(x[1]) cos(x[1])//|
|
|
/
assume(cp1r > 0, cp2r > 0);
simplify(tmp);
1 / / 3 3
---------- \sin(x[1]) sin(x[7]) \-cos(x[1]) cos(x[7])
2
cp1r cp1r

+ 2 cos(x[1]) cos(x[7]) cp1r csgn(cp1r) cp1r

2 3 \ \

- cp1r csgn(cp1r) cp1r + cos(x[1]) cos(x[7])/ csgn(cp1r)/

 

should csgn(cp1r) be simplified to 1 already? What is wrong with my script?

 

Thanks 

Everett

First 1236 1237 1238 1239 1240 1241 1242 Last Page 1238 of 2429