MaplePrimes Questions

So here is the issue: I have a 50 by 50 tridiagonal matrix. The entries in the first row, first column are -i*x and the last row last column is -i*x; these are along the main diagonal, where i is complex and x is a variable. Everything in between these two entries is 0. Above and below the main diagonal the entries are -1. My issue is that I have to find a conditon on x that makes the eigenvalues real. I am completely new to maple and have no programming experience.. Can someone show me how to this?

Using Maple 18, I solved for minimum and maximum price. Instead of using fsolve I wanna use procedure programming structure in order to get the same results. How can I do it?

min_sol := fsolve([bc_cond, slope_cond, x[G, 1] = w[aggr, 1]], {p = 0 .. 1, x[G, 1] = 0 .. w[aggr, 1], x[G, 2] = 0 .. w[aggr, 2]}); p_min := subs(min_sol, p); max_sol := fsolve([bc_cond, slope_cond, x[G, 2] = w[aggr, 2]], {p = 0 .. 1, x[G, 1] = 0 .. w[aggr, 1], x[G, 2] = 0 .. w[aggr, 2]}); p_max := subs(max_sol, p);
{p = 0.3857139820, x[G, 1] = 127.8000000, x[G, 2] = 38.99045418}
0.3857139820
{p = 0.8841007104, x[G, 1] = 44.30160890, x[G, 2] = 164.2000000}
0.8841007104

Hi,

I am trying to realize the following calculation in Maple.

$
  \left[\sum_{i=0}^n y_i(x) \partial_x^i , \sum_{j=0}^m z_j(x) \partial_x^j \right]  \\
=   \sum_{i=0}^n \sum_{j=0}^m \sum_{l=0}^i  \binom il y_i(x) \left( \partial_x^{i-l} z_j(x)\right) \partial_x^{l+j} \\
- \sum_{j=0}^m \sum_{i=0}^n \sum_{l=0}^j  \binom jl z_j(x) \left( \partial_x^{j-l} z_i(x)\right) \partial_x^{l+i} \ .

$

 

Is there a way to make maple understand d/dx as a differential opperator and calculate with it? When i for example try to calculate diff(d/dx, x) it should give me d^2/dx^2 as a result. Unfortunately i don't know how to realize this.

Basic problem is i don't know how to realize operator expressions in maple like for example:

f(x) d/dx      ( f(x) is a smooth function of x here )

where when applied to a function h(x) it should result in f(x) d/dx h(x) .

 

Is that possible?

 

Thank you very much in advance.

I am trying to expand out the terms  of equation 13.  The expand command causes the lhs to be zero?


Initialize the metric and tetrad

 

restart; with(Physics); with(Tetrads); with(PDETools)

0, "%1 is not a command in the %2 package", Tetrads, Physics

(1.1)

X = [zetabar, zeta, v, u]

X = [zetabar, zeta, v, u]

(1.2)

ds2 := Physics:-`*`(Physics:-`*`(2, dzeta), dzetabar)+Physics:-`*`(Physics:-`*`(2, du), dv)+Physics:-`*`(Physics:-`*`(2, H(zetabar, zeta, v, u)), (du+Physics:-`*`(Ybar(zetabar, zeta, v, u), dzeta)+Physics:-`*`(Y(zetabar, zeta, v, u), dzetabar)-Physics:-`*`(Physics:-`*`(Y(zetabar, zeta, v, u), Ybar(zetabar, zeta, v, u)), dv))^2)

2*dzeta*dzetabar+2*du*dv+2*H(zetabar, zeta, v, u)*(du+Ybar(zetabar, zeta, v, u)*dzeta+Y(zetabar, zeta, v, u)*dzetabar-Y(zetabar, zeta, v, u)*Ybar(zetabar, zeta, v, u)*dv)^2

(1.3)

declare(ds2)

Ybar(zetabar, zeta, v, u)*`will now be displayed as`*Ybar

(1.4)

NULL

vierbien = Matrix([[1, 0, -Ybar(zetabar, zeta, v, u), 0], [0, 1, -Y(zetabar, zeta, v, u), 0], [Physics:-`*`(H(zetabar, zeta, v, u), Y(zetabar, zeta, v, u)), Physics:-`*`(H(zetabar, zeta, v, u), Ybar(zetabar, zeta, v, u)), 1-Physics:-`*`(Physics:-`*`(H(zetabar, zeta, v, u), Y(zetabar, zeta, v, u)), Ybar(zetabar, zeta, v, u)), H(zetabar, zeta, v, u)], [Y(zetabar, zeta, v, u), Ybar(zetabar, zeta, v, u), -Physics:-`*`(Y(zetabar, zeta, v, u), Ybar(zetabar, zeta, v, u)), 1]])

vierbien = (Matrix(4, 4, {(1, 1) = 1, (1, 2) = 0, (1, 3) = -Ybar(zetabar, Zeta, v, u), (1, 4) = 0, (2, 1) = 0, (2, 2) = 1, (2, 3) = -Y(zetabar, Zeta, v, u), (2, 4) = 0, (3, 1) = H(zetabar, Zeta, v, u)*Y(zetabar, Zeta, v, u), (3, 2) = H(zetabar, Zeta, v, u)*Ybar(zetabar, Zeta, v, u), (3, 3) = 1-H(zetabar, Zeta, v, u)*Y(zetabar, Zeta, v, u)*Ybar(zetabar, Zeta, v, u), (3, 4) = H(zetabar, Zeta, v, u), (4, 1) = Y(zetabar, Zeta, v, u), (4, 2) = Ybar(zetabar, Zeta, v, u), (4, 3) = -Y(zetabar, Zeta, v, u)*Ybar(zetabar, Zeta, v, u), (4, 4) = 1}))

(1.5)

``

NULL

Setup(tetrad = rhs(vierbien = Matrix(%id = 18446744078213056502)), metric = ds2, mathematicalnotation = true, automaticsimplification = true, coordinatesystems = (X = [zetabar, zeta, v, u]), signature = "+++-")

[automaticsimplification = true, coordinatesystems = {X}, mathematicalnotation = true, metric = {(1, 1) = 2*H(X)*Y(X)^2, (1, 2) = 1+2*H(X)*Y(X)*Ybar(X), (1, 3) = -2*H(X)*Y(X)^2*Ybar(X), (1, 4) = 2*H(X)*Y(X), (2, 2) = 2*H(X)*Ybar(X)^2, (2, 3) = -2*H(X)*Ybar(X)^2*Y(X), (2, 4) = 2*H(X)*Ybar(X), (3, 3) = 2*H(X)*Y(X)^2*Ybar(X)^2, (3, 4) = 1-2*H(X)*Y(X)*Ybar(X), (4, 4) = 2*H(X)}, signature = `+ + + -`, tetrad = {(1, 1) = 1, (1, 3) = -Ybar(X), (2, 2) = 1, (2, 3) = -Y(X), (3, 1) = H(X)*Y(X), (3, 2) = H(X)*Ybar(X), (3, 3) = 1-H(X)*Y(X)*Ybar(X), (3, 4) = H(X), (4, 1) = Y(X), (4, 2) = Ybar(X), (4, 3) = -Y(X)*Ybar(X), (4, 4) = 1}]

(1.6)

gamma_[4, 1, 1] = 0

diff(Ybar(X), zeta)-(diff(Ybar(X), u))*Ybar(X) = 0

(1)

gamma_[4, 2, 2] = 0

diff(Y(X), zetabar)-(diff(Y(X), u))*Y(X) = 0

(2)

gamma_[1, 4, 4] = 0

(diff(Ybar(X), u))*Y(X)*Ybar(X)-Y(X)*(diff(Ybar(X), zeta))-Ybar(X)*(diff(Ybar(X), zetabar))-(diff(Ybar(X), v)) = 0

(3)

gamma_[2, 4, 4] = 0

(diff(Y(X), u))*Y(X)*Ybar(X)-Y(X)*(diff(Y(X), zeta))-(diff(Y(X), zetabar))*Ybar(X)-(diff(Y(X), v)) = 0

(4)

gamma_[3, 4, 4] = 0

0 = 0

(5)

gamma_[4, 4, 4] = 0

0 = 0

(6)

shearconditions := {diff(Y(X), zetabar)-(diff(Y(X), u))*Y(X) = 0, diff(Ybar(X), zeta)-(diff(Ybar(X), u))*Ybar(X) = 0, (diff(Y(X), u))*Y(X)*Ybar(X)-Y(X)*(diff(Y(X), zeta))-(diff(Y(X), zetabar))*Ybar(X)-(diff(Y(X), v)) = 0, (diff(Ybar(X), u))*Y(X)*Ybar(X)-Y(X)*(diff(Ybar(X), zeta))-Ybar(X)*(diff(Ybar(X), zetabar))-(diff(Ybar(X), v)) = 0}:

 

 

RicciT := proc (a, b) options operator, arrow; SumOverRepeatedIndices(Ricci[mu, nu]*e_[a, `~mu`]*e_[b, `~nu`]) end proc

proc (a, b) options operator, arrow; Physics:-SumOverRepeatedIndices(Physics:-`*`(Physics:-`*`(Physics:-Ricci[mu, nu], Physics:-Tetrads:-e_[a, `~mu`]), Physics:-Tetrads:-e_[b, `~nu`])) end proc

(7)

SlashD := proc (f, a) options operator, arrow; SumOverRepeatedIndices(D_[b](f)*e_[a, `~b`]) end proc

proc (f, a) options operator, arrow; Physics:-SumOverRepeatedIndices(Physics:-`*`(Physics:-D_[b](f), Physics:-Tetrads:-e_[a, `~b`])) end proc

(8)

SlashD(f(X), 1)

diff(f(X), zeta)-Ybar(X)*(diff(f(X), u))

(9)

SlashD(f(X), 2)

diff(f(X), zetabar)-Y(X)*(diff(f(X), u))

(10)

SlashD(f(X), 3)

(1+H(X)*Y(X)*Ybar(X))*(diff(f(X), u))-H(X)*((diff(f(X), zeta))*Y(X)+Ybar(X)*(diff(f(X), zetabar))+diff(f(X), v))

(11)

SlashD(f(X), 4)

-Y(X)*Ybar(X)*(diff(f(X), u))+Ybar(X)*(diff(f(X), zetabar))+(diff(f(X), zeta))*Y(X)+diff(f(X), v)

(12)

NULL

  simplify(RicciT(1, 2), shearconditions) = 0

H(X)*(diff(diff(Y(X), zeta), zetabar))*Ybar(X)-H(X)*Ybar(X)*Y(X)*(diff(diff(Ybar(X), u), zetabar))-H(X)*Ybar(X)^2*(diff(diff(Y(X), u), zetabar))-H(X)*Y(X)^2*(diff(diff(Ybar(X), u), zeta))-2*H(X)*Y(X)*Ybar(X)*(diff(diff(Y(X), u), zeta))+H(X)*Y(X)^2*Ybar(X)*(diff(diff(Ybar(X), u), u))-H(X)*Y(X)*(diff(diff(Ybar(X), u), v))+H(X)*Y(X)*Ybar(X)^2*(diff(diff(Y(X), u), u))-H(X)*(diff(diff(Y(X), u), v))*Ybar(X)+H(X)*(diff(Ybar(X), zetabar))^2+(-3*H(X)*Y(X)*(diff(Ybar(X), u))-(diff(H(X), u))*Y(X)*Ybar(X)+(diff(H(X), zeta))*Y(X)+(diff(H(X), zetabar))*Ybar(X)+diff(H(X), v))*(diff(Ybar(X), zetabar))+H(X)*(diff(Y(X), zeta))^2+(-4*H(X)*(diff(Y(X), u))*Ybar(X)-(diff(H(X), u))*Y(X)*Ybar(X)+(diff(H(X), zeta))*Y(X)+(diff(H(X), zetabar))*Ybar(X)+diff(H(X), v))*(diff(Y(X), zeta))+2*H(X)*Y(X)^2*(diff(Ybar(X), u))^2-Y(X)*(-(diff(H(X), u))*Y(X)*Ybar(X)+(diff(H(X), zeta))*Y(X)+(diff(H(X), zetabar))*Ybar(X)+diff(H(X), v))*(diff(Ybar(X), u))+2*(diff(Y(X), u))*Ybar(X)*(H(X)*(diff(Y(X), u))*Ybar(X)+(1/2)*(diff(H(X), u))*Y(X)*Ybar(X)-(1/2)*(diff(H(X), zeta))*Y(X)-(1/2)*(diff(H(X), zetabar))*Ybar(X)-(1/2)*(diff(H(X), v))) = 0

(13)

``

0 = 0

0 = 0

(14)

``

Why does the expand command cause the lhs to be zero?

NULL


Download Question_R12.mw

I want to know with what x,y, z,  function f is minimum, whereas function g is constant.

 

regards

Hi

I want to know with what x/y, z,  function f is minimum, whereas function g is constant.

regards

 

Hello every one,

Is any one knows how to solve the following inequality with assumptions that all parameters are real positive and k<1 and delta > c*alpha

(1/2)*((alpha*k^2-3*alpha*k-2*beta)*sqrt(delta^2*(k-1)*(k-2)*(c*alpha-delta)^2)-k*delta*(alpha*k^2-3*alpha*k+2*alpha-2*beta)*(c*alpha-delta))/(delta^2*(alpha*k^2-3*alpha*k-2*beta))<0

I tried the following code but it  dosn't make sense:

u:=(1/2)*((alpha*k^2-3*alpha*k-2*beta)*sqrt(delta^2*(k-1)*(k-2)*(c*alpha-delta)^2)-k*delta*(alpha*k^2-3*alpha*k+2*alpha-2*beta)*(c*alpha-delta))/(delta^2*(alpha*k^2-3*alpha*k-2*beta))

solve({u < 0,alpha > 0, beta > 0, c > 0, delta > 0, delta > c*alpha, k > 0, k < 1, })

In fact I want to know under which circumastances the above inequality is negative.

THX

Is there a command in maple that shows which files were read during start up? I am confused as to which maple init file is being read on my PC.  From http://www.maplesoft.com/support/help/Maple/view.aspx?path=worksheet/reference/initialization

it says

"Under Windows, the initialization file is called maple.ini.
If <Maple>\lib\maple.ini exists, it is loaded first (where <Maple> is your Maple installation directory). With a  network installation of Maple, the commands in this initialization file will be executed by all users on the network.
To execute a user's personal set of commands, only the first initialization file in one of the following paths will be loaded.
1) The binary directory of your current working directory (for example, "c:\Program_Files\Maple\bin.win\maple.ini")
2) The <Maple>\Users directory (for example, "c:\Program_Files\Maple\Users\maple.ini")
3) The user's personal profile directory (multiuser only) (for example, "c:\Documents_and_Settings\userid\maple.ini")
      
Maple reads and executes the network initialization file before the personal initialization file."

How do I find out, from inside Maple, which file(s) were read? Or make maple shows a trace of the loading process to see what files ini files it is reading?

Maple 18.2 on windows. btw, the above help page seems old. I am on windows 7, and I do not have "c:\Program_Files\Maple\" folder. And do not have "c:\Documents_and_Settings" folder. So the above help is not very useful. May be it was written during windows 95 times?

Hi all,

I have some "boolean variable" constraint equation like this:

a1*x1+a2*x2+...+an*xn>=b1*y1+b2*y2+...+bn*yn

where a1,a2,...,an and b1, b2, ..., bn are 1 or -1

These equations will be used in LPSolve or the other command to find a group of parameters which can fit them.

Now I used for-loop to deal with this kind of question, for example:

But there are more than 10 boolean variables in my case and It's very inefficient. On the other hand, using for-loop to determine the equation we solve in the command will lead to great confusion.

I think there should be some ways able to solve this kind of "boolean variables" question in Maple, such as, through assume command to define the type of "boolean variable".

But I have no idea how to do it.

I have the following construct:
for i from 1 to 10 do
cubeprod:=i^3;
if irem(cubeprod,3)=0  and if(modp(cubeprod,2)<>0 then
cubesum(cubeprod);// I need both if statements to be true in order to invoke cubesum(). I've noticed that using an and between both if statements is incorrect but :

for i from 1 to 10 do
cubeprod:=i^3;
if irem(cubeprod,3)=0 then 
 if modp(cubeprod,2)<>0 then cubesum(cubeprod) fi;
end if;
end do;

gives me an error as well. What is the right syntax to achieve this?

I have the following procedure to do the above. It works but it returns [9,10],[10,9],[12,1] for n=1729(for example). How do I modify this to 

a) to count 9,10 and 10,9 as the same and hence only show one of them

b) get 1,12 to show as a solution?

cubesum:=proc(n::nonnegint)
global listcub:=table();
local k:=0, x:=iroot(iquo(n,3),3),y:=x,x3:=x^3,y3:=y^3;
if 3*x3 <> n then x=x+1; x3:=x^3;y:=x;y3:=x3 end if;
while x3<=n do
y:=iroot(n-x3,3); y3:=y^3;
if(x3+y3 = n) then k:=k+1; listcub[k]:=[x,y]end if;
x:=x+1; x3:=x^3;
end do;
convert(listcub,list);
end proc:

 

Hi
I have my question makes any sense. I am from Denmark and not used to write math in english.

I have an characteristic matrix with an variable λ that takes on differen values.

How do I write λ in the matrix so Maple knows that when I call out a row with the variable λ in it and asssign

λ to a specific value, Maple changes λ to the specific value.

 

Example (I was thinking something like this):

A:=Matrix(2,2,[(1-λ_i),2,3,(4-λ_i)])

λ_1:=2

λ_2:=4

A[1],λ_1               (1-2) 2

A[1],λ_2               (1-4) 2

A[2],λ_1               3 (4-2)

A[2],λ_2               3 (4-4)

Hi, I am an student and I am currently working on a system that sketches the relation of predator and prey of yellowstone's gray wolf and elk. I tried using the Lotka-Volterra model, but I wanted to add more parameters and add a carrying capacity for the system. Unfortunatley I cannot find a way to edit the Lotka model to my needs, and because I am new i do not know how to create my own model. This is the two equations I want to use: (D(x))(t) = alpha*x(t)-ax^2/k-b*x(t)*y(t)-gx(t), (D(y))(t) = -beta*y(t)+c*x(t)*y(t)-gy(t)

were k is carrying capacity.

Basically what I am asking is that if someone can help make the system workable on Maple and some steps of how to do it. 

What I tried is at

 

http://apfp.sourceforge.net/maple_interval_arith.pdf

 

I would like to be able to do comparisons of intervals.

At least take min or max - I thought I saw that on help pages but didn't get it to work.

Would also like to use with complex numbers - tried evalrC - but did not do what I expected.

 

First 1312 1313 1314 1315 1316 1317 1318 Last Page 1314 of 2434