MaplePrimes Questions

Hello friends,


I try to write a loop in Maple.


The equation is f (x) = x + 3


x is a variable and should be from 50 to 70 with dx = 5 can be used in the function, so that f (x) is to be determined.

How can I write such a loop?

Hi

y''+(4/x)*y'-a*y^n=0

that a=constant

LM:=proc(n)
local L;
uses combinat;
L:=permute([1$(n*(n-1)/2), 0$(n*(n-1)/2)], n*(n-1)/2);
[seq(Matrix(n,{seq(seq((i+1,j)=L[k][(i-1)*i/2+j], j=1..i), i=1..n-1)}, shape=symmetric), k=1..nops(L))];
end proc:
M := LM(5);
N := nops(M);
append("E:\\mm.txt");
for i from 1 to N do
ExportMatrix( "E://mm.txt", M[i]);
od:

 

hope to export to a text file

and show

for example

matrix([[1,1,1],[1,1,0],[0,0,0]]);


matrix([[1,1,1],[1,1,0],[0,0,0]]);


matrix([[1,1,1],[1,1,0],[0,0,0]]);

...

etc

 

is it possible to generalize a function to a combinatorial level for approximate axioms

for example, first 100 or 1000 data points satisfy axioms

or 100% satisfy a axioms which means satisfy to infinity


because i find data always not exactly satisfy the axioms,
i guess it only satisfy to some limit, this may explain why data has decimal number

or conversely is it possible to generalize some axioms which approximate the original exact axioms
then data can exactly satisfy the approximate axioms

can generalize a nested forloop to achieve this goal?

how can it be done in algebra point of view?

 

For example:

x*y = for loop -> for loop -> i*j

it can change for loop expression into algebra

for i from 1 to 10 do
for j from 1 to 10 do
print i*j
od:
od:

how to solve this eq by maple:

P:=Matrix([[ 0 , .5 , .5 , 0 , 0 , 0 ], [ 1/3 , 0 , 0 , 1/3 , 1/3 , 0 ], [ 1/3 , 0 , 0 , 0 , 1/3 , 1/3 ], [ 0 , 1 , 0 , 0 , 0 , 0 ], [ 0 , .5 , .5 , 0 , 0 , 0 ], [ 0 , 0 , 1 , 0 , 0 , 0 ]]);

 

pii:=Vector[row]([ a , b , c , d , e , f ])

 

how to find

pii.P=pii

 

Silaws

Hi

 Mt := 1-(sum(4*l^2*exp(-beta[n]^2*tau)/(beta[n]^2*(l^2+beta[n]^2)), n = 1 .. infinity))

where the beta[n]s   are  roots of :

beta[n]*BesselJ(1, beta[n])-l*BesselJ(0, beta[n]) = 0

for  l=1,10,20,40,50,100

I want to plot Mt vs. tou for these l 's  in one diagram

 

with(combinat); 

L:=permute([1$(n*(n-1)/2), 0$(n*(n-1)/2)], n*(n-1)/2);

 

Error, (in combinat:-permute) 2nd argument must be a non-negative integer

 

what is $ in permute?

let m3 = [[0; 1; 0]; [1; 0; 1]; [0; 1; 0]]

1. Firstly, express this matrix into sequence function expression

2. how to express this matrix in terms of forloop code

3. for complicated case such as 1 is not in easy pattern, can it intelligently express the matrix in terms of for loop code

 

is there exist extra tools to express matrix in terms of for loop code or sequence function code?

Hi,

I have a problem solving two equations.  They are as follows:

s := 1/(273.16+50); s1 := 1/(273.16+145); s3 := 1/(273.16+250); s2 := 1/(273.16+197.5); gamma0 := 0.1e-3; gamma1 := .5; gamma2 := 0.15e-2; beta := -3800:

c := 300; n := 200; tau1 := 99; tau2 := 120;


Delta := solve(1-exp(-(gam0*tau1+(1/2)*gam1*tau1^2)*exp(beta*s1)) = 1-exp(-(gam0*a+(1/2)*gam1*a^2)*exp(beta*s2)), a);
a := Delta[1];


Theta := solve(1-exp(-(gam0*(a+tau2-tau1)+(1/2)*gam1*(a+tau2-tau1)^2)*exp(beta*s2)) = 1-exp(-(gam0*b+(1/2)*gam1*b^2)*exp(beta*s3)), b);
b := Theta[1];

n1 := int((gam1*t+gam0)*exp(beta*s1)*exp(-(gam0*t+(1/2)*gam1*t^2)*exp(beta*s1)), t = 0 .. tau1);
n22 := (n-n1)*(int((gam1*t+gam0)*exp(beta*s2)*exp(-(gam0*t+(1/2)*gam1*t^2)*exp(beta*s2)), t = a1 .. a1+tau2-tau1));
n2 := eval(n22, a1 = a);
n33 := (n-n1-n2)*(Int((gam1*t+gam0)*exp(beta*s3)*exp(-(gam0*t+(1/2)*gam1*t^2)*exp(beta*s3)), t = b1 .. c));
n3 := eval(n33, a1 = a);
n4 := n-n1-n2-n3;

g1 := -n1*(Int((1/(gam1*t+gam0)-t*exp(beta*s1))*(gamma2*t^2+gamma1*t+gamma0)*exp(beta*s1)*exp(-(gamma0*t+(1/2)*gamma1*t^2+(1/3)*gamma2*t^3)*exp(beta*s1)), t = 0 .. tau1))-n2*(Int((1/(gam0+gam1*(a+t-tau1))-(a+t-tau1)*exp(beta*s2))*(gamma0+gamma1*(a+t-tau1)+gamma2*(a+t-tau1)^2)*exp(beta*s2)*exp(-(gamma0*(a+t-tau1)+(1/2)*gamma1*(a+t-tau1)^2+(1/3)*gamma2*(a+t-tau1)^3)*exp(beta*s2)), t = tau1 .. tau2))-n3*(Int((1/(gam0+gam1*(b+t-tau2))-(b+t-tau2)*exp(s3))*(gamma0+gamma1*(b+t-tau2)+gamma2*(b+t-tau2)^2)*exp(beta*s3)*exp(-(gamma0*(b+t-tau2)+(1/2)*gamma1*(b+t-tau2)^2+(1/3)*gamma2*(b+t-tau2)^3)*exp(beta*s3)), t = tau2 .. c))+(n-n1-n2-n3)*(1/(gam0+gam1*(b+c-tau2))-(b+c-tau2)*exp(s3))*(gamma0+gamma1*(b+c-tau2)+gamma2*(b+c-tau2)^2)*exp(beta*s3)*exp(-(gamma0*(b+c-tau2)+(1/2)*gamma1*(b+c-tau2)^2+(1/3)*gamma2*(b+c-tau2)^3)*exp(beta*s3));

g2 := -n1*(Int((t/(gam1*t+gam0)-(1/2)*t^2*exp(beta*s1))*(gamma2*t^2+gamma1*t+gamma0)*exp(beta*s1)*exp(-(gamma0*t+(1/2)*gamma1*t^2+(1/3)*gamma2*t^3)*exp(beta*s1)), t = 0 .. tau1))-n2*(Int(((a+t-tau1)/(gam0+gam1*(a+t-tau1))-(1/2)*(a+t-tau1)^2*exp(beta*s2))*(gamma0+gamma1*(a+t-tau1)+gamma2*(a+t-tau1)^2)*exp(beta*s2)*exp(-(gamma0*(a+t-tau1)+(1/2)*gamma1*(a+t-tau1)^2+(1/3)*gamma2*(a+t-tau1)^3)*exp(beta*s2)), t = tau1 .. tau2))-n3*(Int(((b+t-tau2)/(gam0+gam1*(b+t-tau2))-(1/2)*(b+t-tau2)^2*exp(s3))*(gamma0+gamma1*(b+t-tau2)+gamma2*(b+t-tau2)^2)*exp(beta*s3)*exp(-(gamma0*(b+t-tau2)+(1/2)*gamma1*(b+t-tau2)^2+(1/3)*gamma2*(b+t-tau2)^3)*exp(beta*s3)), t = tau2 .. c))+(n-n1-n2-n3)*((b+c-tau2)/(gam0+gam1*(b+c-tau2))-(1/2)*(b+c-tau2)^2*exp(s3))*(gamma0+gamma1*(b+c-tau2)+gamma2*(b+c-tau2)^2)*exp(beta*s3)*exp(-(gamma0*(b+c-tau2)+(1/2)*gamma1*(b+c-tau2)^2+(1/3)*gamma2*(b+c-tau2)^3)*exp(beta*s3));


solve({g1 = 0, g2 = 0}, {gam0, gam1});

Warning, solutions may have been lost.

What do I do wrong?

Thanks for advice in advance.

 

Hello, I am new user of Maple and I have simple problem. I have different results after pasting and typing text. Can you help me?different signs

I am attempting to reproduce the the direction field for the the diferential equation below that I found in a book. I am using the dfieldplot command in the window x=0..3 and y=-1..1 but Maple is only plotting the field above the x-axis. I am aware that this is neither a linear DE nor does it posses a unique solution. Is the type of DE the problem here? Do I need to use a different command?

diff(y(x),x)=3*y(x)^(2/3)

 

Hi there

How can we plot the volume of revolution of r=1-cos(theta) about the line theta-pi/2 in maple13?

Regards

Yegan

I am new to Maplesoft environment. I was trying to create a nested loop as given below:

I came across this error:

                               j:=1
Error, increment of for loop must be numeric.

Could anyone kindly help?

 

Thanks

I'd like to know how to ask Maple to find numerical solutions to underspecified systems of nonlinear equations.  For example, suppose I had a system of equations like this:

eq1 := y1 = tanh(x1);

eq2 := y2 = cosh(x1 + x2);

eq3 := y1 + y2 = 2.0;

Typing this:

fsolve([eq1, eq2, eq3]);

results in the following error:

Error, (in fsolve) number of equations, 3, does not match number of variables, 4

In this situation I can easily artificially restrict the system to find a solution.  For example, I can do:

eq4 := x1 = 0.0;

fsolve([eq1, eq2, eq3, eq4]);

which will result in the following solution:

{x1 = 0., x2 = 1.316957897, y1 = 0., y2 = 2.000000000}

The issue here is that I pulled x1 = 0.0; out of thin air.  Setting a single variable to zero would not work to solve an arbitrary set of nonlinear equations.  How can I ask Maple to find a single (not necessarily unique) solution to an underspecified system of nonlinear equations?

Hi there,

I am trying to maximize a function given a set of values to a parameter in the function. The function is an differential equation belonging to a system of two differential equations.

I have a for loop to state different values to the parameter.

Maple yields the error:

Error, (in Optimization:-NLPSolve) cannot evaluate the solution further right of 0.17757507e-4, probably a singularity

When trying to maximize the function.

Supposed that I was doing something wrong in the loop, if I reproduce the contents of the loop outside, and set a value for the parameter. If I plot the solution of the ordinary differential equation, I can see where the maximum lies.

Having plot it, the Optimizamtion:-Maximize works as expected.

However, omitting the plot has a weird effect: I only get the same result depending on the bounds I set for the Maximization:

de1 := diff(A(t), t) = r*m*(1-g)*A(t)-piecewise(t < 8, r*A(t), t >= 8, (r+k)*A(t));
de2 := diff(G(t), t) = r*m*g*A(t)-l*G(t);

ics := A(0) = 25.0, G(0) = 0.;
num := dsolve({de1, de2, ics}, {A(t), G(t)}, type = numeric, output = listprocedure, parameters = [g]);

num(parameters = [g = .15]);
val := eval(G(t), num);

# odeplot(val, [t, G(t)], t = 0 .. 100);


Maximize(val);
Error, (in Optimization:-NLPSolve) cannot evaluate the solution further right of 0.17757507e-4, probably a singularity

val2 := Maximize(val);

Error, (in Optimization:-NLPSolve) cannot evaluate the solution further right of 0.17757507e-4, probably a singularity

val3 := Maximize(val(t), t = 0 .. 60);

  [10267.824035766165, [t = 8.25727747134303]]

val4 := Maximize(val(t), t = 0 .. 100);

[6.863211343195069e-9, [t = 59.84184367042171]]

 

The right answer is [10267.824035766165, [t = 8.25727747134303]]: Why do I get two different answers even if in that range there is only one relative maximum?

I ignore whether the way I am specifying the arguments for the Maximize function is correct. val is a procedure.

 

What am I missing?

Attached is the worksheet: MaplePrimes_malaria_param_variation_2.mw

 

Thanks,

jon

First 1331 1332 1333 1334 1335 1336 1337 Last Page 1333 of 2434