MaplePrimes Questions

how to composite two system of polynomials in maple

for a o b = identity

how to composite two polynomial in maple

i would like to search a o b = 1

 

composite two polynomial equal identity

I am entering into Maple, but it interprets it as

How do I change this partial derivative to a total one. (Both x and y can be assumed invertible functions of parameter u and their derivatives are nonzero)

I need to find all combinations of a binary list of length 3.  For example: [0,0,0] , [1,0,0] , [0,1,0] , [0,0,1] , [1,1,0] , [1,0,1] , [0,1,1], [1,1,1].  Does anyone have a procedure or can write a loop that does this?

I want to extract information  about an ODE.

For example, having the next ODE:

ode := cos(x)*(diff(y[1](x), x, x))+sinh((1/10)*x+1)*y[2](x)+y[1](x)+exp(-x)-1:

extract information as:

the inputs system are :

{y[1](x),y[2](x)}

the independent variable is:

{x}

 

Some suggestion? I am tried with: indets, DEtools[odeadvisor], whattype, evaluating the function, convert it into a table and using the "indices". Probably the answer is related to dsolve/numeric/process_input

Regards

 

restart; with(Physics); with(Tetrads)

0, "%1 is not a command in the %2 package", Tetrads, Physics

(1)

Physics:-Setup(coordinatesystems = {X}, mathematicalnotation = true)

[coordinatesystems = {X}, mathematicalnotation = true]

(2)

Physics:-Define(Ybar[a], Y[a], GammaT[a, b, c], RicciT[b, c] = %d_[c](GammaT[`~a`, b, a])-%d_[a](GammaT[`~a`, b, c])+Physics:-`*`(GammaT[`~m`, b, a], GammaT[`~a`, m, c])-Physics:-`*`(GammaT[`~m`, b, c], GammaT[`~a`, m, a])+Physics:-`*`(GammaT[`~a`, b, m], GammaT[`~m`, c, a]-GammaT[`~m`, a, c]), RiemannT[k, l, m, n] = %d_[k](GammaT[m, n, l])-%d_[l](GammaT[m, n, k])+Physics:-`*`(GammaT[`~a`, m, l], GammaT[a, n, k])-Physics:-`*`(GammaT[`~a`, m, k], GammaT[a, n, l])+Physics:-`*`(GammaT[m, n, a], GammaT[`~a`, k, l]-GammaT[`~a`, l, k]))

RicciT[1, 3]

%d_[3](GammaT[`~1`, 1, 1]+GammaT[`~2`, 1, 2]+GammaT[`~3`, 1, 3]+GammaT[`~4`, 1, 4])+GammaT[`~4`, 1, 2]*GammaT[`~2`, 3, 4]+GammaT[`~1`, 1, 3]*GammaT[`~3`, 3, 1]+GammaT[`~2`, 1, 3]*GammaT[`~3`, 3, 2]+GammaT[`~4`, 1, 3]*GammaT[`~3`, 3, 4]-GammaT[`~2`, 1, 3]*GammaT[`~1`, 2, 1]-GammaT[`~2`, 1, 3]*GammaT[`~2`, 2, 2]-GammaT[`~2`, 1, 3]*GammaT[`~4`, 2, 4]-GammaT[`~3`, 1, 3]*GammaT[`~1`, 3, 1]-GammaT[`~3`, 1, 3]*GammaT[`~2`, 3, 2]-GammaT[`~3`, 1, 3]*GammaT[`~4`, 3, 4]-GammaT[`~4`, 1, 3]*GammaT[`~1`, 4, 1]-GammaT[`~4`, 1, 3]*GammaT[`~2`, 4, 2]-GammaT[`~4`, 1, 3]*GammaT[`~4`, 4, 4]-GammaT[`~1`, 1, 3]*GammaT[`~2`, 1, 2]-GammaT[`~1`, 1, 3]*GammaT[`~4`, 1, 4]+GammaT[`~1`, 1, 4]*GammaT[`~4`, 3, 1]+GammaT[`~2`, 1, 4]*GammaT[`~4`, 3, 2]+GammaT[`~4`, 1, 4]*GammaT[`~4`, 3, 4]+GammaT[`~1`, 1, 1]*GammaT[`~1`, 3, 1]+GammaT[`~2`, 1, 1]*GammaT[`~1`, 3, 2]+GammaT[`~4`, 1, 1]*GammaT[`~1`, 3, 4]+GammaT[`~1`, 1, 2]*GammaT[`~2`, 3, 1]+GammaT[`~2`, 1, 2]*GammaT[`~2`, 3, 2]+GammaT[`~1`, 3, 3]*GammaT[`~3`, 1, 1]+GammaT[`~2`, 3, 3]*GammaT[`~3`, 1, 2]+GammaT[`~3`, 1, 4]*GammaT[`~4`, 3, 3]-GammaT[`~3`, 4, 3]*GammaT[`~4`, 1, 3]-GammaT[`~1`, 1, 1]*GammaT[`~1`, 1, 3]-GammaT[`~1`, 1, 3]*GammaT[`~3`, 1, 3]-GammaT[`~2`, 1, 3]*GammaT[`~3`, 2, 3]-%d_[4](GammaT[`~4`, 1, 3])+%d_[1](GammaT[`~1`, 1, 3])+%d_[3](GammaT[`~3`, 1, 3])+%d_[2](GammaT[`~2`, 1, 3])

(3)

for a to 4 do for b to 4 do RicciT[a, b] end do end do

Error, (in index/PhysicsTensor) expected summation indices of type symbol, received: 1

 

 

Now, if I type the RicciT from (3) it displays the same result. However,......

 

RicciT[1, 3]

%d_[3](GammaT[`~1`, 1, 1]+GammaT[`~2`, 1, 2]+GammaT[`~3`, 1, 3]+GammaT[`~4`, 1, 4])+GammaT[`~4`, 1, 2]*GammaT[`~2`, 3, 4]+GammaT[`~1`, 1, 3]*GammaT[`~3`, 3, 1]+GammaT[`~2`, 1, 3]*GammaT[`~3`, 3, 2]+GammaT[`~4`, 1, 3]*GammaT[`~3`, 3, 4]-GammaT[`~2`, 1, 3]*GammaT[`~1`, 2, 1]-GammaT[`~2`, 1, 3]*GammaT[`~2`, 2, 2]-GammaT[`~2`, 1, 3]*GammaT[`~4`, 2, 4]-GammaT[`~3`, 1, 3]*GammaT[`~1`, 3, 1]-GammaT[`~3`, 1, 3]*GammaT[`~2`, 3, 2]-GammaT[`~3`, 1, 3]*GammaT[`~4`, 3, 4]-GammaT[`~4`, 1, 3]*GammaT[`~1`, 4, 1]-GammaT[`~4`, 1, 3]*GammaT[`~2`, 4, 2]-GammaT[`~4`, 1, 3]*GammaT[`~4`, 4, 4]-GammaT[`~1`, 1, 3]*GammaT[`~2`, 1, 2]-GammaT[`~1`, 1, 3]*GammaT[`~4`, 1, 4]+GammaT[`~1`, 1, 4]*GammaT[`~4`, 3, 1]+GammaT[`~2`, 1, 4]*GammaT[`~4`, 3, 2]+GammaT[`~4`, 1, 4]*GammaT[`~4`, 3, 4]+GammaT[`~1`, 1, 1]*GammaT[`~1`, 3, 1]+GammaT[`~2`, 1, 1]*GammaT[`~1`, 3, 2]+GammaT[`~4`, 1, 1]*GammaT[`~1`, 3, 4]+GammaT[`~1`, 1, 2]*GammaT[`~2`, 3, 1]+GammaT[`~2`, 1, 2]*GammaT[`~2`, 3, 2]+GammaT[`~1`, 3, 3]*GammaT[`~3`, 1, 1]+GammaT[`~2`, 3, 3]*GammaT[`~3`, 1, 2]+GammaT[`~3`, 1, 4]*GammaT[`~4`, 3, 3]-GammaT[`~3`, 4, 3]*GammaT[`~4`, 1, 3]-GammaT[`~1`, 1, 1]*GammaT[`~1`, 1, 3]-GammaT[`~1`, 1, 3]*GammaT[`~3`, 1, 3]-GammaT[`~2`, 1, 3]*GammaT[`~3`, 2, 3]-%d_[4](GammaT[`~4`, 1, 3])+%d_[1](GammaT[`~1`, 1, 3])+%d_[3](GammaT[`~3`, 1, 3])+%d_[2](GammaT[`~2`, 1, 3])

(4)

 

If I type a different RicciT, then ...

 

RicciT[2, 3]

Error, (in index/PhysicsTensor) expected summation indices of type symbol, received: 1

 

 

The for loop is changing the tetrad definition of RicciT.

 

NULL

 

Download Question_about_tetrads_in_for_loop.mw

Dear friends,

 

I am trying to do an integration which consists of a list of data; let me explain it more:

I have to do

however, I do not have f(x) in the form of a function. f(x) is a list which is:

also, I have x as

How can I do the integration between 1<x<6 ?

 

 

 

 

Hi,

 

I have a problem with creating a function contains n-dimensional independent variables with random function .. The function looks like:

f(x)=sum(U[i] * abs(x[i])^i,i=1..n)

where U is a random between 0 and 1

 

For 1-dimensional problem, it will be like:

f(x)=U*abs(x)

The plot by MATLAB will be:

 

While, for 2-dimensional problem, it will be like:

f(x[1],x[2])=U[1]*abs(x[1]) - (-U[2]*abs(x[2])^2)

 

and the plot with MATLAB will be:

 

The MATLAB code is:

x1min=-5;
x1max=5;
x2min=-5;
x2max=5;
R=1000; % steps resolution
x1=x1min:(x1max-x1min)/R:x1max;
x2=x2min:(x2max-x2min)/R:x2max;

for j=1:length(x1)

    % For 1-dimensional plotting
    f1(j)=rand*abs(x1(j));

    % For 2-dimensional plotting
    for i=1:length(x2)
        fn(i)=f1(j)+rand*abs(x2(i))^2;
    end

    fn_tot(j,:)=fn;

end

figure(1)
plot(x1,f1);


figure(2)
meshc(x1,x2,fn_tot);

 

 

I have used Maple because of its great graphics and animation, and for the mathematical analysis capability. However, to animate the above problem for 1- and 2-dimensional problems, I always fail!

My attempt has been just successed to plot 1-dimensional problem (without animation) .. And it tooks long-time with many codes!

restart;

X := Statistics:-RandomVariable(('Uniform')(0, 1));
R := Statistics:-Sample(X, 1000);

Vect := abs(Vector[column]([seq(0 .. 10, 10/999)]));

V := `~`[`-`](Vect, 5);

with(LinearAlgebra);
Mat := Multiply(V, R);

with(ArrayTools);
f := ArrayTools:-Diagonal(Mat);

F := abs(f);

Axis := Transpose(V);

f5 := plot(Axis, F, style = line);

 

And finally I got the graph:

 

But the problem is:

How can I animate it? Maybe I need to express it with new Maple code?

How can I plot and animate it when n=2?

 

Thanks

 

I would like to define all the geometry parameters in a multibody model in MapleSim in mm.

Consequently, i define the mm unit for a parameter in 3 places :
1)  in the Parameters area of the subsystem 

2) in the Tab Inspector of the subsystem

 

3) in the Tab Inspector of the rigid body frame of the subsystem

 

The problem is that I receive the warning "Possible double conversion unit on a parameter" and the dimension seems to be as 10^-3 *mm soit too much reduced.

I see that in some examples of the library of Maplesim the parameters of the parameters area of a subsystem are defined as real and consequently, it doesn't cause this kind of problem.

However, how can I do if I want to define my parameters in the parameters area of a subsystem as a position in mm ?

Thanks a lot for your help

 

 

Hello,

I use for the 3D visualization the component CAD geometry with STL files.
My STL files are created from CATIA with parts mesured in mm.
In MapleSim, in order to keep mm, I have, of course, to set "mm" in the inspector tab of the components "CAD geometry".
But, I have also to put the scale factor to 0.001.
I don't understand why I should to set it to 0.001 because :
- the CADs from CATIA are in mm.
- and the option in the inspector tab of the components "CAD geometry" is also in mm.
Would you have some precisions about the scale factor for the "CAD geometry" element ?

Thank you for your help.

Given the following code:

for i[1] from 0 to 1 do  

for i[2] from 0 to 1 do

for i[3] from 0 to  1 do                             end do:  end do:  end do:

Resulting:     000, 001, 010, 011, 100, 101,110, 111

Is anybody aware of a simplification of this code ?

Thanks to all of you.

Hi,

i have been looking to see if i could get the source code for some of the calculus functions in maple. So far, i have tried this

kernelopts(opaquemodules = false)

interface(verboseproc = 3)

print(DiffTutor)

which shows the result

module() ... end module

does anybody have any idea how i would:

1) get the full list of sub-procedures in the module

2) get the source code of any of the sub-procedures in the module?

Thanks in advance!!

Using the Plot Component it is possible to obtain
an interactive worksheet for drawing visually plane geometry
elements, e.g. select a triangle and draw its incircle.
Do you know if such worksheets are available somewhere?

I am trying to use Maple 18 to do some computations with matrices over a ring of polynomials in one variable over the integers $\mathbb{Z}[x]$, or the corresponding field of fractions $\mathbb{Q}(x)$.

 

The matrices in question are of dimension approximately 5000 and are sparse. The algorithm requires at least as many matrix multiplications as the dimension of the space.

Doing some small examples, of dimension 674, with a laptop (i7-3520 M CPU @2.9GHz with 8GB of Ram) gave the following disappointing result:

time(LinearAlgebra[MatrixMatrixMultiply](A,A);

34.694

 

When a colleague with access to a Mathematica license performed an identical calculation using sparse matrices in Mathematica, we found that Mathematica performed the calcuation in fractions of a second.

 

In small dimensional examples, constructing the matrices over the field of fractions as sparse in Maple 18 resulted in a four fold decrease in the already disappointing performance of the LinearAlgebra package in Maple 18.

 

Is there any way to improve the computational performance of Maple 18 for symbolic linear algebra? Alternatively, is the performance of Maple 2015 for symbolic linear algebra noticably better than Maple 18?

 

Thanks in advance.


Dave

 

 

Hello

I have this function:

 

f(x)=80x-2x2

I want to plot it (and ofcourse define it)

 

I then need to find A'(x)= 0 which has to give 20, but my maple wont do that.

 

Help me thanks.

First 1224 1225 1226 1227 1228 1229 1230 Last Page 1226 of 2428