MaplePrimes Questions

Hi all,

I'm trying to plot the regions of a cube that are defined by an inequality. At the moment I am able to plot only the surface defined by the corresponding equality. 

That's the code: 

with(plots)

implicitplot3d(x^2*y = z, z = 0 .. 1, y = 0 .. 1, x = 0 .. 1);

Now I would like to plot the two regions defined by the corresponding inequality. 

Have you got any idea on how to do this?

Bests

Manuele

Hi My main problem is that the new installer is ridiculously small that I cannot even press the buttons acuratley. I am running windows 8.1 on a Surface Pro 2. I had no problems installing maple 17.

 

I also ran into errors using the Bitrock installer 3 times, I am not even sure if it is installed correctly now.

 

is there anyway to get maple 18 without using the Bitrock installer?

Hello guys ...

I used a numerically method to solve couple differential equation that it has some boundary conditions. My problem is that some range of answers has 50% error . Do you know things for improving our answers in maple ?

my problem is :

a*Φ''''(x)+b*Φ''(x)+c*Φ(x)+d*Ψ''(x)+e*Ψ(x):=0

d*Φ''(x)+e*Φ(x)+j*Ψ''(x)+h*Ψ(x):=0

suggestion method by preben Alsholm:

a,b,c,d,e,j,h are constants.suppose some numbers for these constants . I used this code:


VR22:=0.1178*diff(phi(x),x,x,x,x)-0.2167*diff(phi(x),x,x)+0.0156*diff(psi(x),x,x)+0.2852*phi(x)+0.0804*psi(x);
VS22:=0.3668*diff(psi(x),x,x)-0.0156*diff(phi(x),x,x)-0.8043*psi(x)-0.80400*phi(x);
bok:=evalf(dsolve({VR22=0,VS22=0}));

PHI,PSI:=op(subs(bok,[phi(x),psi(x)]));
Eqs:={eval(PHI,x=1.366)=1,eval(diff(PHI,x),x=1.366)=0,eval(PHI,x=-1.366)=1,eval(diff(PHI,x),x=-1.366)=0,
eval(PSI,x=1.366)=1,eval(PSI,x=1.366)=1};
C:=fsolve(Eqs,indets(%,name));
eval(bok,C);
SOL:=fnormal(evalc(%));


I used digits for my code at the first of writting.

please help me ... what should i do?

X belongto A, eigenvector(X) = 0

from this statement , 

using linearalgebra package eigenvectors function

the eigenvector matrix [3][1],[3][2],[3][3] are 1 , contradict 1=0

so, need to find another kind of eigenvector in terms of algebra 

using original basic calculation solve, however got error

 

m := Matrix([[a1,a2,a3],[a4,a5,a6],[a7,a8,a9]]);
eigenvector1 := Eigenvectors(m);
solve(
[eigenvector1[2][1][1]=0, eigenvector1[2][1][2]=0, eigenvector1[2][1][3]=0,
eigenvector1[2][2][1]=0, eigenvector1[2][2][2]=0, eigenvector1[2][2][3]=0,
eigenvector1[2][3][1]=0, eigenvector1[2][3][2]=0, eigenvector1[2][3][3]=0]
);

solve(
[eigenvector1[2][1][1]=0, eigenvector1[2][1][2]=0, eigenvector1[2][1][3]=0,
eigenvector1[2][2][1]=0, eigenvector1[2][2][2]=0, eigenvector1[2][2][3]=0]
);

 

eigenvalue1 :=
(1/6)*(36*a7*a1*a3+108*a7*a2*a6+108*a8*a4*a3+36*a8*a5*a6

...

eigenvalue2 :=
-(1/12)*(36*a7*a1*a3+108*a7*a2*a6+108*a8*a4*a3+36*a8*a5*a6

...

eigenvalue3 :=
-(1/12)*(36*a7*a1*a3+108*a7*a2*a6+

...

 

solve(MatrixMatrixMultiply(Matrix([[a1,a2,a3],[a4,a5,a6],[a7,a8,a9]])-Matrix([[eigenvalue1,0,0],[0,eigenvalue1,0],[0,0,eigenvalue1]]), Matrix([[x],[y],[z]])),[x,y,z]);
solve(MatrixMatrixMultiply(Matrix([[a1,a2,a3],[a4,a5,a6],[a7,a8,a9]])-Matrix([[eigenvalue2,0,0],[0,eigenvalue2,0],[0,0,eigenvalue2]]), Matrix([[x],[y],[z]])),[x,y,z]);
solve(MatrixMatrixMultiply(Matrix([[a1,a2,a3],[a4,a5,a6],[a7,a8,a9]])-Matrix([[eigenvalue3,0,0],[0,eigenvalue3,0],[0,0,eigenvalue3]]), Matrix([[x],[y],[z]])),[x,y,z]);

 

got error when using solve

> solve(MatrixMatrixMultiply(Matrix([[a1, a2, a3], [a4, a5, a6], [a7, a8, a9]])-Matrix([[eigenvalue1, 0, 0], [0, eigenvalue1, 0], [0, 0, eigenvalue1]]), Matrix([[x], [y], [z]])), [x, y, z]);
Error, invalid input: solve expects its 1st argument, eqs, to be of type {`and`, `not`, `or`, algebraic, relation(algebraic), ({set, list})({`and`, `not`, `or`, algebraic, relation(algebraic)})}, but received Matrix(3, 1, {(1, 1) = ((2/3)*a1-(1/6)*(36*a7*a1*a3+108*a7*a2*a6+108*a8*a4*a3+36*a8*a6*a5-72*a7*a3*a5-72*a8*a6*a1-72*a9*a4*a2+48*a9*a5*a1-12*a9*a1^2-12*a5*a1^2+8*a1^3-12*a9^2*a1-12*a5^2*a1-12*a9^2*a5-12*a9*a5^2+36*a8*a6*a9+36*a7*a3*a9+36*a4*a2*a1+36*a4*a2*a5+8*a9^3+8*a5^3+12*(54*a7*a2^2*a6*a4*a1+114*a8*a6*a9*a1*a4*a2+6*a8*a6*a9*a1*a7*a3+54*a8*a4*a3^2*a7*a9-60*a9*a1^2*a8*a6*a5-60*a8*a6*a7*a3*a5^2-60*a8*a6*a4*a2*a9^2-24*a9*a1*a4^2*a2^2+6*...

MatrixOperation := module() option package;  export `+`, LinearAlgebra;
    `+` := proc(a::float, b::float) option overload;
 :-`+`(map(x->x^2,a),map(x->x^2,b));
    end proc;
end module;


with(MatrixOperation);
with(LinearAlgebra):
m := Matrix([[1,2],[3,4]]);
L := MatrixMatrixMultiply(m,m);

1 2  1 2
3 4  3 4

1*1+2*3 = 1 + 6 = 1 after overload + with a+b-a*b
1*2+2*4 = 2 + 8 = -6

L should be Matrix([[1, -6],[....]])

 http://en.wikibooks.org/wiki/Linear_Algebra/

Representing_Linear_Maps_with_Matrices

 

how to calculate the first step

(2,0) -> (1,1,1) and (1,4) -> (1,2,0)

how to use maple command to get (1,1,1) and (1,2,0)

how to use maple command to calculate rep(h)

 

to get (0,-1/2,1) and (1,-1,0)

http://en.wikibooks.org/wiki/Linear_Algebra

/Representing_Linear_Maps_with_Matrices

hello evreybody i have these Error :

 

restart:with(plots):

mb:=765; mp:=587;Ib:=76.3*10^3;Ip:=7.3*10^3; l:=0.92; d:=10; F:=1.2; omega:=0.43;g:=9.81;ly:=3;k:=0.02001014429;h:=3;a:=30;b:=15;

765

 

587

 

76300.0

 

7300.0

 

.92

 

10

 

1.2

 

.43

 

9.81

 

3

 

0.2001014429e-1

 

3

 

30

 

15

(1)

A:=(1000*g)/2;

4905.00

(2)

v:=1/tan(theta(t));

1/tan(theta(t))

(3)

s:=(1000*F*g*sin(omega*t-k*x(t)))/k*sinh(k*h);

35337.21492*sin(.43*t-0.2001014429e-1*x(t))

(4)

n:=49.97465213;

49.97465213

(5)

Z:=z(t)-a/2*sin(theta(t))+b/2*cos(theta(t));

z(t)-15*sin(theta(t))+(15/2)*cos(theta(t))

(6)

Za:=z(t)+a/2*sin(theta(t))+b/2*cos(theta(t));

z(t)+15*sin(theta(t))+(15/2)*cos(theta(t))

(7)

eq1:=(mp+mb)*diff(x(t),t$2)+mp*(d*cos(theta(t))+l*cos(alpha(t)+theta(t)))*diff(theta(t),t$2)+mp*l*cos(alpha(t)+theta(t))*diff(alpha(t),t$2)+mp*(d*diff(theta(t),t)^2*sin(theta(t))+l*(diff(theta(t),t)+diff(alpha(t),t))^2*sin(alpha(t)+theta(t)))+A*(Z)^2+s*(sinh(k*(h+Z))-sinh(k*h))-A*(Za)^2-s*(sinh(k*(h+Za))-sinh(k*h))+A*(Za^2-Z^2)-s*(sinh(k*(h+Za))-sinh(k*(h+Z)))=0;

1352*(diff(diff(x(t), t), t))+587*(10*cos(theta(t))+.92*cos(alpha(t)+theta(t)))*(diff(diff(theta(t), t), t))+540.04*cos(alpha(t)+theta(t))*(diff(diff(alpha(t), t), t))+5870*(diff(theta(t), t))^2*sin(theta(t))+540.04*(diff(theta(t), t)+diff(alpha(t), t))^2*sin(alpha(t)+theta(t))+35337.21492*sin(.43*t-0.2001014429e-1*x(t))*(sinh(0.6003043287e-1+0.2001014429e-1*z(t)-.3001521644*sin(theta(t))+.1500760822*cos(theta(t)))-0.6006649417e-1)-35337.21492*sin(.43*t-0.2001014429e-1*x(t))*(sinh(0.6003043287e-1+0.2001014429e-1*z(t)+.3001521644*sin(theta(t))+.1500760822*cos(theta(t)))-0.6006649417e-1)-35337.21492*sin(.43*t-0.2001014429e-1*x(t))*(sinh(0.6003043287e-1+0.2001014429e-1*z(t)+.3001521644*sin(theta(t))+.1500760822*cos(theta(t)))-sinh(0.6003043287e-1+0.2001014429e-1*z(t)-.3001521644*sin(theta(t))+.1500760822*cos(theta(t)))) = 0

(8)

eq2:=(mp+mb)*diff(z(t),t$2)-mp*d*(sin(theta(t)+alpha(t))+sin(theta(t)))*diff(theta(t),t$2)-mp*l*sin(alpha(t)+theta(t))*diff(alpha(t),t$2)+mp*(d*diff(theta(t),t)^2*cos(theta(t))+l*(diff(theta(t),t)+diff(alpha(t),t))^2*cos(alpha(t)+theta(t)))-A*tan(theta(t))*(Z)^2-s*tan(theta(t))*(sinh(k*(h+Z))-sin(k*h))+A*tan(theta(t))*(Za)^2+s*tan(theta(t))*(sinh(k*(h+Za))-sin(k*h))+A*v*(Za^2-Z^2)+s*v*(sinh(k*(h+Za))-sinh(k*(h+Z)))=0;

1352*(diff(diff(z(t), t), t))-5870*(sin(alpha(t)+theta(t))+sin(theta(t)))*(diff(diff(theta(t), t), t))-540.04*sin(alpha(t)+theta(t))*(diff(diff(alpha(t), t), t))+5870*(diff(theta(t), t))^2*cos(theta(t))+540.04*(diff(theta(t), t)+diff(alpha(t), t))^2*cos(alpha(t)+theta(t))-4905.00*tan(theta(t))*(z(t)-15*sin(theta(t))+(15/2)*cos(theta(t)))^2-35337.21492*sin(.43*t-0.2001014429e-1*x(t))*tan(theta(t))*(sinh(0.6003043287e-1+0.2001014429e-1*z(t)-.3001521644*sin(theta(t))+.1500760822*cos(theta(t)))-0.5999438456e-1)+4905.00*tan(theta(t))*(z(t)+15*sin(theta(t))+(15/2)*cos(theta(t)))^2+35337.21492*sin(.43*t-0.2001014429e-1*x(t))*tan(theta(t))*(sinh(0.6003043287e-1+0.2001014429e-1*z(t)+.3001521644*sin(theta(t))+.1500760822*cos(theta(t)))-0.5999438456e-1)+4905.00*(-(z(t)-15*sin(theta(t))+(15/2)*cos(theta(t)))^2+(z(t)+15*sin(theta(t))+(15/2)*cos(theta(t)))^2)/tan(theta(t))+35337.21492*sin(.43*t-0.2001014429e-1*x(t))*(sinh(0.6003043287e-1+0.2001014429e-1*z(t)+.3001521644*sin(theta(t))+.1500760822*cos(theta(t)))-sinh(0.6003043287e-1+0.2001014429e-1*z(t)-.3001521644*sin(theta(t))+.1500760822*cos(theta(t))))/tan(theta(t)) = 0

(9)

eq3:=mp*(d*cos(theta(t))+l*cos(alpha(t)+theta(t)))*diff(x(t),t$2)-mp*(l*sin(theta(t)+alpha(t))+d*sin(theta(t)))*diff(z(t),t$2)+(Ip+Ib+mp*(d^2+l^2)+2*mp*d*l*cos(alpha(t)))*diff(theta(t),t$2)+(Ip+mp*l^2+mp*d*l*cos(alpha(t)))*diff(alpha(t),t$2)-mp*sin(alpha(t))*(l*d*diff(alpha(t),t)^2-l*d*(diff(alpha(t),t)+diff(theta(t),t))^2)+mp*9.81*l*sin(alpha(t)+theta(t))+mp*9.81*d*sin(theta(t))=0;

587*(10*cos(theta(t))+.92*cos(alpha(t)+theta(t)))*(diff(diff(x(t), t), t))-587*(.92*sin(alpha(t)+theta(t))+10*sin(theta(t)))*(diff(diff(z(t), t), t))+(142796.8368+10800.80*cos(alpha(t)))*(diff(diff(theta(t), t), t))+(7796.8368+5400.40*cos(alpha(t)))*(diff(diff(alpha(t), t), t))-587*sin(alpha(t))*(9.20*(diff(alpha(t), t))^2-9.20*(diff(theta(t), t)+diff(alpha(t), t))^2)+5297.7924*sin(alpha(t)+theta(t))+57584.70*sin(theta(t)) = 0

(10)

eq4:=mp*l*cos(alpha(t)+theta(t))*diff(x(t),t$2)-mp*l*sin(alpha(t)+theta(t))*diff(z(t),t$2)+(Ip+mp*l^2+mp*d*l*cos(alpha(t)))*diff(theta(t),t$2)+(Ip+mp*l^2)*diff(alpha(t),t$2)-mp*9.81*l*sin(alpha(t)+theta(t))+l*d*mp*diff(theta(t),t$1)^2*sin(alpha(t))=0;

540.04*cos(alpha(t)+theta(t))*(diff(diff(x(t), t), t))-540.04*sin(alpha(t)+theta(t))*(diff(diff(z(t), t), t))+(7796.8368+5400.40*cos(alpha(t)))*(diff(diff(theta(t), t), t))+7796.8368*(diff(diff(alpha(t), t), t))-5297.7924*sin(alpha(t)+theta(t))+5400.40*(diff(theta(t), t))^2*sin(alpha(t)) = 0

(11)

CI:= x(0)=0,z(0)=3,theta(0)=0,alpha(0)=0,D(x)(0)=0,D(alpha)(0)=0,D(z)(0)=0,D(theta)(0)=0;

x(0) = 0, z(0) = 3, theta(0) = 0, alpha(0) = 0, (D(x))(0) = 0, (D(alpha))(0) = 0, (D(z))(0) = 0, (D(theta))(0) = 0

(12)

solution:=dsolve([eq1,eq2,eq3,eq4,CI],numeric,maxfun=0);

proc (x_rkf45) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](x_rkf45) else _xout := evalf(x_rkf45) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 20, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = undefined, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 4 ) = (Array(1..53, {(1) = 8, (2) = 8, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 0, (20) = 0, (21) = 1, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0}, datatype = integer[4])), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 6 ) = (Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = 3.0, (8) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = alpha(t), Y[2] = diff(alpha(t),t), Y[3] = theta(t), Y[4] = diff(theta(t),t), Y[5] = x(t), Y[6] = diff(x(t),t), Y[7] = z(t), Y[8] = diff(z(t),t)]`; YP[2] := -(1352*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))+1352*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))-730134.08*cos(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))-540.04*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))+540.04*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+730134.08*cos(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))+730134.08*sin(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-540.04*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))+540.04*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-730134.08*sin(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+1827904*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))-1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3])))/(2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2+1460268.16*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2); YP[4] := (10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))+10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))+8365847205177.4464*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)-75503444196167.489249*sin(Y[1]+Y[3])-820689610827907.49184*sin(Y[3])-730134.08*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))-291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-291643.2016*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*sin(Y[1]+Y[3])+394301608.5632*cos(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-291643.2016*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-291643.2016*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))+394301608.5632*sin(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+1827904*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))-730134.08*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])+730134.08*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3]))/(2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2+1460268.16*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2); YP[6] := -(10541323.3536*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))+7796.8368*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-7796.8368*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-1352*(7796.8368+5400.40*cos(Y[1]))^2*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))-540.04*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*cos(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-540.04*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*sin(Y[1]+Y[3])+730134.08*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*cos(Y[1]+Y[3])+540.04*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-540.04*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-291643.2016*sin(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))*cos(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-291643.2016*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))+291643.2016*sin(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*sin(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))+1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-730134.08*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))*cos(Y[1]+Y[3])+540.04*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+540.04*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3]))/(2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2+1460268.16*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2); YP[8] := -(291643.2016*cos(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+1080.08*cos(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-291643.2016*cos(Y[1]+Y[3])^2*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))*(142796.8368+10800.80*cos(Y[1]))+730134.08*sin(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))+10541323.3536*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))*(142796.8368+10800.80*cos(Y[1]))-7796.8368*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-1352*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))*(7796.8368+5400.40*cos(Y[1]))^2+540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-291643.2016*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*sin(Y[1]+Y[3])*cos(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))+7796.8368*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])+1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3])))/(2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2+1460268.16*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2); YP[1] := Y[2]; YP[3] := Y[4]; YP[5] := Y[6]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 11 ) = (Array(1..6, 0..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0}, datatype = float[8], order = C_order)), ( 8 ) = ([Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = undefined, (3) = .0, (4) = undefined, (5) = .0, (6) = undefined, (7) = .0, (8) = undefined}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..8, {(1) = .1, (2) = .1, (3) = .1, (4) = .1, (5) = .1, (6) = .1, (7) = .1, (8) = .1}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = 0, (2) = 0, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 0, (8) = 0}, datatype = integer[4]), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = 3.0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)]), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 13 ) = (), ( 12 ) = (), ( 20 ) = ([]), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = alpha(t), Y[2] = diff(alpha(t),t), Y[3] = theta(t), Y[4] = diff(theta(t),t), Y[5] = x(t), Y[6] = diff(x(t),t), Y[7] = z(t), Y[8] = diff(z(t),t)]`; YP[2] := -(1352*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))+1352*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))-730134.08*cos(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))-540.04*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))+540.04*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+730134.08*cos(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))+730134.08*sin(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-540.04*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))+540.04*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-730134.08*sin(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+1827904*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))-1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3])))/(2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2+1460268.16*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2); YP[4] := (10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))+10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))+8365847205177.4464*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)-75503444196167.489249*sin(Y[1]+Y[3])-820689610827907.49184*sin(Y[3])-730134.08*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))-291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-291643.2016*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*sin(Y[1]+Y[3])+394301608.5632*cos(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-291643.2016*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-291643.2016*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))+394301608.5632*sin(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+1827904*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))-730134.08*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])+730134.08*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3]))/(2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2+1460268.16*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2); YP[6] := -(10541323.3536*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))+7796.8368*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-7796.8368*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-1352*(7796.8368+5400.40*cos(Y[1]))^2*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))-540.04*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*cos(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-540.04*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*sin(Y[1]+Y[3])+730134.08*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*cos(Y[1]+Y[3])+540.04*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-540.04*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-291643.2016*sin(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))*cos(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-291643.2016*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))+291643.2016*sin(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*sin(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))+1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-730134.08*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))*cos(Y[1]+Y[3])+540.04*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+540.04*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3]))/(2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2+1460268.16*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2); YP[8] := -(291643.2016*cos(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+1080.08*cos(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-291643.2016*cos(Y[1]+Y[3])^2*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))*(142796.8368+10800.80*cos(Y[1]))+730134.08*sin(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))+10541323.3536*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))*(142796.8368+10800.80*cos(Y[1]))-7796.8368*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-1352*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))*(7796.8368+5400.40*cos(Y[1]))^2+540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-291643.2016*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*sin(Y[1]+Y[3])*cos(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))+7796.8368*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])+1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3])))/(2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2+1460268.16*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2); YP[1] := Y[2]; YP[3] := Y[4]; YP[5] := Y[6]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 18 ) = ([]), ( 19 ) = (0)  ] ))  ] ); _y0 := Array(0..8, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0., (8) = 3.}); _vmap := array( 1 .. 8, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3), ( 5 ) = (5), ( 4 ) = (4), ( 7 ) = (7), ( 6 ) = (6), ( 8 ) = (8)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 10 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 10 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-10 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-10; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 10 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _src = 0 and 10 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; _dat[4][26] := _EnvDSNumericSaveDigits; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(0..0, {}), (3) = [t, alpha(t), diff(alpha(t), t), theta(t), diff(theta(t), t), x(t), diff(x(t), t), z(t), diff(z(t), t)], (4) = []}); _vars := _dat[3]; _pars := map(rhs, _dat[4]); _n := nops(_vars)-1; _solnproc := _dat[1]; if not type(_xout, 'numeric') then if member(x_rkf45, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(x_rkf45, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(x_rkf45, ["last", 'last', "initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(x_rkf45, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(x_rkf45), 'string') = rhs(x_rkf45); if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else error "initial and/or parameter values must be specified in a list" end if; if lhs(_xout) = "initial" then return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(x_rkf45), 'string') = rhs(x_rkf45)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _vars end if; if procname <> unknown then return ('procname')(x_rkf45) else _ndsol; _ndsol := pointto(_dat[2][0]); return ('_ndsol')(x_rkf45) end if end if; try _res := _solnproc(_xout); [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] catch: error  end try end proc

(13)

``

#odeplot(solution,[[t,x(t)],[t,alpha(t)],[t,z(t)],[t,theta(t)]], t=0..1000, thickness=2);

odeplot(solution,[[t,x(t)]], t=0..100, thickness=2);

Warning, cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up

 

 

 

odeplot(solution,[[t,z(t)]], t=0..100, thickness=2);

Warning, cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up

 

 

 

odeplot(solution,[[t,alpha(t)]], t=0..100, thickness=2);

Warning, cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up

 

 

 

odeplot(solution,[[t,theta(t)]], t=0..100, thickness=2);

Warning, cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up

 

 

 

Download fffffffff_INFINI.mw

please help 
thank you !

Hi Everybody,

I installed the Maple Toolbox for matlab and tried to run my old code.  For some reason, maple('restart') will cause Matlab to lock up.  Any ideas?

Windows 7 64-bit.  Matlab 2012b 32-bit, Maple 18 32-bit

Hi Mapleprimers,

I'm using CodeGeneration to convert a procedure I obtained with unapply() into a Matlab function.  I'm having problems getting the outputting function to run correctly in Matlab.  I'm going to dynamically generating equations, so directly editing the Matlab code won't work here.  I'm having problems getting any output in Matlab.  Here is the code I'm working on:  Series_addGear_codegen.mw

Ideally I would like output in a matrix.  I've tried putting the unapplied procedure in another procedure, but the CodeGeneration doesn't work.

This is the maple output from the function:

unapp(1,2,3,4,5);
{BAT_A = -2.267032891, BAT_V = 271, EM2_A = .4615464218, EM2_P = 125.0790803, EM2_T = -1, EM2_V = 271, EM2_W = 2, GBa_T = 12, GBa_W = 5/3, GBb_T = -4, GBb_W = 5, GEN_A = 1.805486469, GEN_P = 489.2868330, GEN_T = -12, GEN_V = 271, GEN_W = 5/3, ICE_mdot_g = 20}

Since I'll know the order of variables, I want the Matlab function to output:

[-2.267032891,  271,  .4615464218,  125.0790803,  -1, ...]

This is the output after putting the Matlab function in Matlab:

>> unapp(1, 1, 1, 1, 1)
Undefined function or variable 'BAT_A'.

Error in unapp (line 39)
unappreturn = unique([BAT_A == -t35 / 0.271e3 - t73 / 0.271e3 BAT_V == 271 EM2_A == t35 /
0.271e3 EM2_P == t35 EM2_T == -FD_T EM2_V == 271 EM2_W == FD_W GBa_T == t44 GBa_W == t41 GBb_T
== -ICE_T GB

This is the Matlab code that is generated by Maple 18:

MCode:=CodeGeneration[Matlab](unapp, declare = [FD_T::float, FD_W::float, GB_R::float, ICE_T::float, ICE_W::float],defaulttype=float,optimize,defaulttype = numeric);
Warning, could not preprocess. Found `abs` or similar in the 'While'/'For' conditions.
Warning, procedure/module options ignored
function unappreturn = unapp(FD_T, FD_W, GB_R, ICE_T, ICE_W)
t2 = 0.1e1 * FD_T * FD_W;
t5 = abs(FD_W);
t7 = abs(FD_T);
t9 = t5 ^ 2;
t13 = t7 ^ 2;
t15 = t9 * t5;
t21 = t13 * t7;
t23 = t9 ^ 2;
t31 = t13 ^ 2;
t33 = 0.1483000000e3 - 0.4267000000e1 * t5 - 0.1277000000e2 * t7 + 0.3640000000e-1 * t9 - 0.1160000000e1 * t5 * t7 + 0.2580000000e0 * t13 - 0.1181000000e-3 * t15 + 0.5994000000e-3 * t9 * t7 - 0.1171000000e-3 * t5 * t13 - 0.1739000000e-2 * t21 + 0.1245000000e-6 * t23 - 0.1200000000e-5 * t15 * t7 + 0.1584000000e-5 * t9 * t13 - 0.4383000000e-6 * t5 * t21 + 0.2947000000e-5 * t31;
if (-t2 == 0.0e0)
t35 = 0.0e0;
elseif (-t2 < 0.0e0)
t35 = t33;
else
t35 = -t33;
end
t36 = ICE_T * ICE_W;
t37 = 0.1e1 * t36;
t41 = ICE_W / GB_R;
t42 = abs(t41);
t44 = ICE_T * GB_R;
t45 = abs(t44);
t47 = t42 ^ 2;
t51 = t45 ^ 2;
t53 = t47 * t42;
t59 = t51 * t45;
t61 = t47 ^ 2;
t69 = t51 ^ 2;
t71 = 0.5280000000e-11 - 0.3849000000e-13 * t42 + 0.7190000000e2 * t45 + 0.1168000000e-15 * t47 - 0.1296000000e1 * t42 * t45 - 0.2489000000e1 * t51 - 0.1451000000e-18 * t53 - 0.1326000000e-3 * t47 * t45 + 0.8141000000e-2 * t42 * t51 + 0.4539000000e-2 * t59 + 0.6325000000e-22 * t61 + 0.2091000000e-6 * t53 * t45 - 0.3455000000e-5 * t47 * t51 - 0.2499000000e-4 * t42 * t59 + 0.5321000000e-4 * t69;
if (-t37 == 0.0e0)
t73 = 0.0e0;
elseif (-t37 < 0.0e0)
t73 = t71;
else
t73 = -t71;
end
unappreturn = unique([BAT_A == -t35 / 0.271e3 - t73 / 0.271e3 BAT_V == 271 EM2_A == t35 / 0.271e3 EM2_P == t35 EM2_T == -FD_T EM2_V == 271 EM2_W == FD_W GBa_T == t44 GBa_W == t41 GBb_T == -ICE_T GBb_W == ICE_W GEN_A == t73 / 0.271e3 GEN_P == t73 GEN_T == -t44 GEN_V == 271 GEN_W == t41 ICE_mdot_g == t36]);

 

 

Consider the following code:

with(LinearAlgebra):
with(Physics):
Setup(anticommutativeprefix = psi):
psiFermi := Vector(2,symbol = psi):
psiBose  := Vector(2,symbol = phi):
A := Matrix([[0,1],[1,0]]):
Transpose(psiFermi) . A;
Transpose(psiBose ) . A;

It produces the following output:

Why is the first line, for anticommuting components, not evaluated to the same form as the second line, for commuting components? The actual choice of the matrix A seems immaterial; the odd behaviour is present even if A is chosen to be the identity matrix!

In comparison, the 'contracted' (scalarly) expressions

Transpose(psiFermi) . A . psiFermi,
Transpose(psiBose ) . A . psiBose;

produce the following completely sensible output:

I am not able to simplify my equation, any help would be appreciated ! I want the V[0]^2/r[0]  term to be eliminated

restart:with(Student[VectorCalculus]): 

R1:=rho(diff(u(r,theta,z,t)*(V[0])^2/r[0],t)+ u(r,theta,z,t)*V[0](diff(u(r,theta,z,t)*V[0]/r[0],r))+v(r,theta,z,t)*V[0]/(r*r[0])*diff(u(r,theta,z,t)*V[0],theta)+w(r,theta,z,t)*V[0]*diff(u(r,theta,z,t)*V[0]/r[0],z)-(v(r,theta,z,t)*V[0])^2/(r*r[0])) +diff(p(r,theta,z,t)*rho*V[0]^2/r[0],r); simplify(R1*r[0]/V[0]^2);

rho((diff(u(r, theta, z, t), t))*V[0]^2/r[0]+u(r, theta, z, t)*V[0]((diff(u(r, theta, z, t), r))*V[0]/r[0])+v(r, theta, z, t)*V[0]^2*(diff(u(r, theta, z, t), theta))/(r*r[0])+w(r, theta, z, t)*V[0]^2*(diff(u(r, theta, z, t), z))/r[0]-v(r, theta, z, t)^2*V[0]^2/(r*r[0]))+(diff(p(r, theta, z, t), r))*rho*V[0]^2/r[0]

 

((diff(p(r, theta, z, t), r))*rho*V[0]^2+rho((w(r, theta, z, t)*V[0]^2*(diff(u(r, theta, z, t), z))*r+(diff(u(r, theta, z, t), t))*V[0]^2*r+u(r, theta, z, t)*V[0]((diff(u(r, theta, z, t), r))*V[0]/r[0])*r*r[0]-v(r, theta, z, t)^2*V[0]^2+v(r, theta, z, t)*V[0]^2*(diff(u(r, theta, z, t), theta)))/(r*r[0]))*r[0])/V[0]^2

(1)

 

Download 1.mw

 

 

Hello,

I'm quite new to Maple and I have a serious problem when I'm trying to solve this system of equations for (a,b,p,v,u,g):

1) alpha[1]= v a u (1- b)
2) alpha[2]= v a ub
3) alpha[3]= v (1-a)=v-va
4) alpha[11]= 1/(2) auv (-1+b) (-b u p+b a u p+b g+p u-u p a) 
5) alpha[22]= 1/(2) a u v b (-b u p+b a u p+b g-g)
6) alpha[33]= 1/(2)(a- 1)apv
7) alpha[12]= -a u v b(pu-pua-g - bup +baup +bg)
8) alpha[13]= (a-1) (b-1)ap vu
9) alpha[23]= (1-a) a p v ub

I tried this command:

solve({v*(1-a) = alpha[3], a*u*v*b = alpha[2], v*a*u*(1-b) = alpha[1], (1/2*(-1+a))*a*p*v = alpha[33], (-1+a)*(-1+b)*a*p*v*u = alpha[13], (1-a)*a*p*v*u*b = alpha[23], (1/2)*a*u*v*b*(-b*u*p+b*a*u*p+b*g-g) = alpha[22], -a*u*v*b*(p*u-u*p*a-g-b*u*p+b*a*u*p+b*g) = alpha[12], (1/2)*a*u*v*(-1+b)*(-b*u*p+b*a*u*p+b*g+p*u-u*p*a) = alpha[11]}, {a, b, g, p, u, v}, 'parametric' = 'full', 'parameters' = {alpha[1], alpha[2], alpha[3], alpha[11], alpha[12], alpha[13], alpha[22], alpha[23], alpha[33]})

 but the Maple output is [ ]. I can find a solution manually but I don't understand why I cannot do it with Maple. It's very important that I find a solution as I have a much more complicated system to solve in a similar manner.

Thank you very much for your help!!

Elena

 

I have a long and complicated expression (say Eq1). I have to solve the two equations (obtained by taking real and imaginary parts of Eq1) for two unknowns. Normally it take around a day on my i5 (3.1 GHz, 4 cores), 8gb ram desktop. I looked into posts related to parallel programming but couldn't get much to reduce the computation time. Is there a way to reduce the computation time ?
Many thanks in advance.

Here's an example compound inequality I'm working on.

Working it out manually.... 

Compound Inequality
4477.25 <= 4477.25+.25*(t-32450) <= 16042.25;

Distribute the coefficient
4477.25 <= 4477.25+.25*t - 8112.50 <= 16042.25;

Combine like terms
4477.25 <= -3635.25+.25*t <= 16042.25;

Add 3635.25 to all sides
8112.50 <= .25*t <= 19677.50;

Divide all sides by .25
32450 <= t <= 78710;

 

How can I ask Maple to simplify this compound inequality? Obviously this is not the correct syntax, It seems Maple doesn't understand what I want it to do.

4477.25 <= 4477.25 + .25 * (t-32450) <= 16042.25;

                       0.00 <= 0.25 t - 8112.50 and 0.25 t <= 19677.50                (112)

 

Also is there a way to ask Maple to only perform one step? In the above example, is it possible to ask Maple to "Distribute the .25", then show the result, next ask it to combine like terms, etc?

First 1419 1420 1421 1422 1423 1424 1425 Last Page 1421 of 2434