MaplePrimes Questions

Dear All

My question may be quite simple for  community of experts in Maple prgramming, but this problem is one of most disturbing problem for last many months. My problem is how to list all coefficient in differential expression of the type

Hi, I'm trying to solve without success numerically the following system of 15 nonlinear equations. Could anyone help, please? Thanks
 

restart

n := 0.27231149e-1:

x := 0.5116034663e-1:

F := .1561816797:

eq1 := sigma*C0 = pgamma*W*H1*(1-E0-L0)/(1+n):

eq2 := sigma*C1 = W*H1*(1-L1):

eq3 := (1+R)*C0 = (1+rho)*exp(x)*C1:

eq4 := (1+R)*C1 = (1+rho)*exp(x)*C2:

eq5 := C1 = (1+phi)*C0:

eq6 := pgamma*L0+pgamma*(1+(1+n)*F/(pgamma*W*H1))*E0+L1 = (1+R)*(1+(1+n)*F/(pgamma*W*H1))/(ppsi*exp(x))-pgamma*(1+(1+n)*F/(pgamma*W*H1))/ppsi:

eq7 := 1 = pgamma*(1+ppsi*E0)/(1+n):

eq8 := exp(x)*A1 = pgamma*W*L0*H1/(1+n)+Epsilon1-C0-F*E0:

eq9 := exp(x)*A2 = W*L1*H1+(1+R)*A1-C1-(1+n)*Epsilon1:

eq10 := (1+R)*A2 = C2:

eq11 := Y = H^alpha*K^(1-alpha):

eq12 := alpha*Y = W*H:

eq13 := (1-alpha)*Y = (1+R)*K:

eq14 := K = A1/(1+n)+A2/(1+n)^2:

eq15 := H = (pgamma*L0+L1)*H1/(1+n):

eq := {eq1, eq2, eq3, eq4, eq5, eq6, eq7, eq8, eq9, eq10, eq11, eq12, eq13, eq14, eq15}:

vars := {A1, A2, C0, C1, C2, E0, H, H1, K, L0, L1, R, W, Y, Epsilon1}:

NULL

fsolve(eq, vars); 1; assign(%)

fsolve({1 = .6865382886+.1072247031*E0, C1 = 1.475639047*C0, H = .9734907289*(.7052335150*L0+L1)*H1, K = .9734907289*A1+.9476841993*A2, Y = H^.6874443*K^.3125557, (1+R)*A2 = C2, (1+R)*C0 = 1.121850394*C1, (1+R)*C1 = 1.121850394*C2, 1.052491643*A1 = .6865382886*W*L0*H1+Epsilon1-C0-.1561816797*E0, 1.052491643*A2 = W*L1*H1+(1+R)*A1-C1-1.027231149*Epsilon1, 5.171201776*C0 = .6865382886*W*H1*(1-E0-L0), 5.171201776*C1 = W*H1*(1-L1), .3125557*Y = (1+R)*K, .6874443*Y = W*H, .7052335150*L0+.7052335150*(1+.2274915796/(W*H1))*E0+L1 = 6.083468374*(1+R)*(1+.2274915796/(W*H1))-4.515468884-1.027231149/(W*H1)}, {A1, A2, C0, C1, C2, E0, H, H1, K, L0, L1, R, W, Y, Epsilon1})

(1)

``

 

Download DDGE.mw

Could someone explain what are the main (functional) differences between professional and personal Maple editions for 2845$ and 299$ respectively?

Tx, Andras

If I store plot directions in a name, the output of that assignment is, annoyingly, a thumbnail plot. Without a way to turn that behavior off, it takes up space and is annoying. However, even more annoying is the fact that, if one enters the plot name alone in a succeeding statement in the same execution group, the plot is produced only as a thumbnail. To produce a standard size plot one has to use display(  ) along with an explicit size parameter.

Strangely enough, if the plot name alone is used in a separate execution group, a normal size plot is produced.

Is there no way to control these annoying behaviors globally?

Hi, I hope to use symbol A, B, directly to get C derivation, without using elements forms of matrix, as shown below.

How to achieve this? 

Thank you.

 

 

> coth;
                                    coth
> restart;
> c := 0;
                                      0
> w := -2*mu;
                                    -2 mu
> a[-1] := 0;
                                      0
> a[0] := mu*lambda*sqrt(-6*a);
                                            (1/2)
                            mu lambda (-6 a)     
> a[1] := (6*(mu*lambda^2+1))/sqrt(-6*a);
                               /         2    \
                             6 \mu lambda  + 1/
                             ------------------
                                      (1/2)    
                                (-6 a)         
> b[-1] := 0;
                                      0
> b[0] := 0;
                                      0
> b[1] := 0;
                                      0
> xi := x+w*t;
                                 x - 2 mu t
> P := sqrt(-mu)*coth(A+sqrt(-mu)*xi);
                     (1/2)     /         (1/2)             \
                (-mu)      coth\A + (-mu)      (x - 2 mu t)/
> u := a[0]+a[1]*P/(1+lambda*P)+a[-1]*(1+lambda*P)/P+b[0]*sqrt(sigma*(1+P^2/mu))/P+b[1]*sqrt(sigma*(1+P^2/mu))+b[-1]*sqrt(sigma*(1+P^2/mu))/P^2;
                 (1/2)
 mu lambda (-6 a)     

           /         2    \      (1/2)     /         (1/2)             \   
         6 \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/   
    + ---------------------------------------------------------------------
            (1/2) /                (1/2)     /         (1/2)             \\
      (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//
> Diff(u, t)+a*u^2*(Diff(u, x))+Diff(u, `$`(x, 3));
/    /                     
| d  |                (1/2)
|--- |mu lambda (-6 a)     
| dt |                     
\    \                     

          /         2    \      (1/2)     /         (1/2)             \   \\     /          
        6 \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/   ||     |          
   + ---------------------------------------------------------------------|| + a |mu lambda
           (1/2) /                (1/2)     /         (1/2)             \\||     |          
     (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)////     \          

        (1/2)
  (-6 a)     

          /         2    \      (1/2)     /         (1/2)             \   \   
        6 \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/   |   
   + ---------------------------------------------------------------------|^2
           (1/2) /                (1/2)     /         (1/2)             \\|   
     (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)///   

  /    /                     
  | d  |                (1/2)
  |--- |mu lambda (-6 a)     
  | dx |                     
  \    \                     

          /         2    \      (1/2)     /         (1/2)             \   \\   
        6 \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/   ||   
   + ---------------------------------------------------------------------|| +
           (1/2) /                (1/2)     /         (1/2)             \\||   
     (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)////   

  / 3 /                     
  |d  |                (1/2)
  |-- |mu lambda (-6 a)     
  |   |                     
  \   \                     

          /         2    \      (1/2)     /         (1/2)             \   \\
        6 \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/   ||
   + ---------------------------------------------------------------------||
           (1/2) /                (1/2)     /         (1/2)             \\||
     (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)////
> value(%);
                          /                                     2\      
     /         2    \   2 |        /         (1/2)             \ |      
  12 \mu lambda  + 1/ mu  \1 - coth\A + (-mu)      (x - 2 mu t)/ /      
--------------------------------------------------------------------- -
      (1/2) /                (1/2)     /         (1/2)             \\   
(-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//   

                                                                         /   
                                    1                                    |   
  ---------------------------------------------------------------------- \12
                                                                       2     
        (1/2) /                (1/2)     /         (1/2)             \\      
  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//      

                                                                           /
  /         2    \      (1/2)     /         (1/2)             \          2 |
  \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/ lambda mu  \1

                                      2\\     /                     
         /         (1/2)             \ ||     |                (1/2)
   - coth\A + (-mu)      (x - 2 mu t)/ // + a |mu lambda (-6 a)     
                                              |                     
                                              \                     

          /         2    \      (1/2)     /         (1/2)             \   \   
        6 \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/   |   
   + ---------------------------------------------------------------------|^2
           (1/2) /                (1/2)     /         (1/2)             \\|   
     (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)///   

  /                           /                                     2\       
  |       /         2    \    |        /         (1/2)             \ |       
  |     6 \mu lambda  + 1/ mu \1 - coth\A + (-mu)      (x - 2 mu t)/ /       
  |- --------------------------------------------------------------------- +
  |        (1/2) /                (1/2)     /         (1/2)             \\   
  |  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//   
  \                                                                          

                                                                         /      
                                    1                                    |  /   
  ---------------------------------------------------------------------- \6 \mu
                                                                       2        
        (1/2) /                (1/2)     /         (1/2)             \\         
  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//         

                                                                      /
        2    \      (1/2)     /         (1/2)             \           |
  lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/ lambda mu \1

                                         \
                                      2\\|
         /         (1/2)             \ |||
   - coth\A + (-mu)      (x - 2 mu t)/ //|
                                         |
                                         |
                                         /

                                                                       2     
                               /                                     2\      
          /         2    \   2 |        /         (1/2)             \ |      
       12 \mu lambda  + 1/ mu  \1 - coth\A + (-mu)      (x - 2 mu t)/ /      
   - --------------------------------------------------------------------- +
           (1/2) /                (1/2)     /         (1/2)             \\   
     (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//   

                                                                        /       
                                    1                                   |   /   
  --------------------------------------------------------------------- \24 \mu
        (1/2) /                (1/2)     /         (1/2)             \\         
  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//         

                                                    2 /
        2    \   2     /         (1/2)             \  |
  lambda  + 1/ mu  coth\A + (-mu)      (x - 2 mu t)/  \1

                                      2\\   
         /         (1/2)             \ ||   
   - coth\A + (-mu)      (x - 2 mu t)/ // +

                                                                         /   
                                                                         |   
                                    1                                    |   
  ---------------------------------------------------------------------- \84
                                                                       2     
        (1/2) /                (1/2)     /         (1/2)             \\      
  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//      

  /         2    \   2     /         (1/2)             \
  \mu lambda  + 1/ mu  coth\A + (-mu)      (x - 2 mu t)/

                                          2                  \
  /                                     2\                   |
  |        /         (1/2)             \ |       (1/2)       |
  \1 - coth\A + (-mu)      (x - 2 mu t)/ /  (-mu)      lambda/

                                                                     3           
                             /                                     2\            
        /         2    \   3 |        /         (1/2)             \ |        2   
     36 \mu lambda  + 1/ mu  \1 - coth\A + (-mu)      (x - 2 mu t)/ /  lambda    
   - ------------------------------------------------------------------------- +
                                                                           3     
            (1/2) /                (1/2)     /         (1/2)             \\      
      (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//      

                                                                         /   
                                                                         |   
                                    1                                    |   
  ---------------------------------------------------------------------- \36
                                                                       4     
        (1/2) /                (1/2)     /         (1/2)             \\      
  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//      

  /         2    \      (1/2)     /         (1/2)             \       3   3
  \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/ lambda  mu  

                                          3\   
  /                                     2\ |   
  |        /         (1/2)             \ | |   
  \1 - coth\A + (-mu)      (x - 2 mu t)/ / / +

                                                                         /   
                                                                         |   
                                    1                                    |   
  ---------------------------------------------------------------------- \72
                                                                       3     
        (1/2) /                (1/2)     /         (1/2)             \\      
  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//      

                                                        2         
  /         2    \   3     /         (1/2)             \        2
  \mu lambda  + 1/ mu  coth\A + (-mu)      (x - 2 mu t)/  lambda  

                                          2\   
  /                                     2\ |   
  |        /         (1/2)             \ | |   
  \1 - coth\A + (-mu)      (x - 2 mu t)/ / / -

                                                                         /   
                                    1                                    |   
  ---------------------------------------------------------------------- \24
                                                                       2     
        (1/2) /                (1/2)     /         (1/2)             \\      
  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//      

                                                        3        /
  /         2    \   2     /         (1/2)             \         |
  \mu lambda  + 1/ mu  coth\A + (-mu)      (x - 2 mu t)/  lambda \1

                                      2\           \
         /         (1/2)             \ |      (1/2)|
   - coth\A + (-mu)      (x - 2 mu t)/ / (-mu)     /
> simplify(%);
Error, (in simplify/tools/_zn) too many levels of recursion
>
>
>
>
pls help

I'm not sure why im getting a complex solution for evalf(h(-1/2)). Posted screenshot here:

http://prntscr.com/8abmta

The answer should be positive 6*2^(2/3) ≈ 9.52

 The computer returns

h(-1/2) =

=

The problem is that evalf((-1)^(1/3)) you get 0.500 + .866I

Is there no way to evaluate a second derivative of a real valued function which has a fractional exponent without receiving complex results? I don't have the time to look at each function and try to figure out what went wrong. I want to plug in any x value into a function defined for all reals and get a real result.

I tried  assume(x , 'real' ) , that did not do anything.

 

    

hi, I just want to calculate Adomian's polynomial but does not got  desire result,plz helpADMP.mw

hi .how i can solve nonlinear equation with unknown prameter omega as below

thanksfrekans.mw

Hi All,

 

I have o problem with simplify. A variable cp1r has been assumed to be positive. Why simplify still has csgn(cp1r) for it? Here is my code:

tmp := subs(cp1t(t)=cp1r, cp2t(t)=cp2r, Ca[2]);
1 / 2 2
----------- |-cp2r sin(x[1]) sin(x[7]) cp1r
2 2 |
cp1r cp2r |
\

2
+ 2 cp2r sin(x[1]) cos(x[1]) cos(x[7]) sin(x[7]) cp1r +

1 / 2 2 /
-------------- \cp2r cos(x[1]) cos(x[7]) sin(x[7]) \
(1/2)
/ 2\
2 \cp1r /
2 \\\
-2 cos(x[1]) cos(x[7]) sin(x[1]) + 2 sin(x[1]) cos(x[1])//|
|
|
/
assume(cp1r > 0, cp2r > 0);
simplify(tmp);
1 / / 3 3
---------- \sin(x[1]) sin(x[7]) \-cos(x[1]) cos(x[7])
2
cp1r cp1r

+ 2 cos(x[1]) cos(x[7]) cp1r csgn(cp1r) cp1r

2 3 \ \

- cp1r csgn(cp1r) cp1r + cos(x[1]) cos(x[7])/ csgn(cp1r)/

 

should csgn(cp1r) be simplified to 1 already? What is wrong with my script?

 

Thanks 

Everett

Maple does not cope with the following simple example:

with(geom3d):

point(A,0,0,0), point(B,1,0,0), point(C,2,0,0), point(E,2,1,0):

AreCoplanar(A,B,C,E);

           Error, (in geom3d:-plane) the points may not be AreCollinear

 

Should we interpret this behavior as a bug? I think I met with this yet 10-12 years ago, but unfortunately since then nothing has changed.

I have the following PDE:

 

u_xx = u_tt + (2^{1/2}u_x-u)^{1/2}

 

Do you have a proposed algorithm to solve in maple for this PDE? I mean pdsolve won't solve it because it's a nonlinear PDE.

 

Hi All,

 

I am working on modeling dynamics for a robot. It requires a write some long expressions into C++.  When I do it, it has some strange problem in creation of C++ code from a vector.

Here is an example of the problem. I have a multivariable polynomial term, I using coeffs to get its coefficients and corresponding unevaluated variables, which works fine. But I can't convert the vector into C++

Ca := coeffs(term, [W, Rf, Rr, dxf, rcf, rcr], 'L'):

L;                           Rf, Rr, dxf

C(L, resultname="L11", output="dSpDdx1.cpp");

Error, (in Translate) options [Rr, dxf] not recognized.

I don't know why maple thought the unevaluated variable Rr and dxf are options instead of the vector I want to convert into c++. Does any one know what I did wrong?

 

Thanks in advance.

 

Everett

First 1242 1243 1244 1245 1246 1247 1248 Last Page 1244 of 2434