MaplePrimes Questions

As an example, the second display in the web site below shows the 42 possible triangulations of a cyclic heptagon polygon.

https://en.wikipedia.org/wiki/Polygon_triangulation

I have a document with quite a few symbols saved to my favorites palette. When I close the file and then reopoen it the Favorites Palette has not changed-the symbols are right where I want them. However, if I open the file with another computer the Favorites Palette is empty! What is happening?  (The document is stored in Dropbox and both computers are Macs running Maple 2023.)

How to solve this equation in symbolic form so that the resulting solution can be used as a formula in Excel?

Is it possible?

C = constant

I would like to use the forget command to make maple forget all the things it remembers in each iteration of the loop.

Could someone help me with that?

More details:  I use ansatz to try to solve systems of pdes. sometimes i put the ansatzs in a list and run a loop to try to solve the set of pdes for each ansatz. Sometimes this takes up a lot of memory and maple says kernel connection is lost.

Say I have a data matrix with one dependent variable and 50 independent variable

The first column is the dependent variable columns my first row has header names of variables say.

Is their way to code such that I can do a Linear regression stepwise such that even interactions terms can be into account and check for a best fit.

As only matlab can do it easily as i  see and it is paid costly software.

If pssible any help kind help. 

If possible some code can be written in maple kind help.

I have some large systems of linear equations.  The solutions are probability generating functions.  I can get solutions in a few minutes for systems of up to n= 200 eqns or so, but Maple just cycles indefinitely if I try to solve much larger systems.  I really only need to perform Gaussian Elimination, as I only need to solve for one of the n solutions.  The matrices are sparse, there are only 3 non-zero entries per row.  I tried to get help from the manuals but I get the impression that sparse solutions are only available for numeric computations.   Doesn't Maple allow for sparse symbolic solutions?  If so, how to do it?

What is the correct way to plot objects which have been created by the geometry library.

e.g. circle, point, line, e.g.

restart; with(geometry)

point(B, 2, 0)

B

(1)

form(B)

point2d

(2)

coordinates(B)

[2, 0]

(3)

with(plots)

display(pointplot(B))

Error, (in plots:-pointplot) points are not in the correct format

 

NULL

Download plotpoint.mw

Hi everyone
how can i overcome this error to solve this ODE ? tnx in advanced.

restart

U := 1:L := 10:k := 1:Dea := 0.00001:CA0 := 10:Pe := U*L/Dea:Da := k*CA0^2/Dea:

Eq1 := diff(CA(x), x, x) - Pe*diff(CA(x), x)/L = Da*L*CA(x)^2/CA0;

diff(diff(CA(x), x), x)-100000.0000*(diff(CA(x), x)) = 10000000.00*CA(x)^2

(1)

BCs := CA(0) = CA0, D(CA)(L) = 0

CA(0) = 10, (D(CA))(10) = 0

(2)

ans := dsolve([Eq1, BCs], numeric);

Error, (in dsolve/numeric/bvp) initial Newton iteration is not converging

 

 

Download Hw.mw

Hallo every body 

i have a question How can be written this system of eqautions without the variable "t"

thanks 

restart

``

eq10 := epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))-Y(t)*alpha

epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))-Y(t)*alpha

(1)

eq11 := alpha*X(t)

alpha*X(t)

(2)

eq12 := epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))-beta*U(t)

epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))-beta*U(t)

(3)

eq13 := beta*Z(t)

beta*Z(t)

(4)

eq14 := epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))-W(t)

epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))-W(t)

(5)

eq15 := V(t)

V(t)

(6)

eq16 := epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))

epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))

(7)

``

Download problem.mw

how can be solved this system in maple 18

restart

fa[1] := -(1/4608)*V[0]^2+(1/4608)*W[0]^2+(1/2304)*U[0]*W[0]+(1/2304)*V[0]*Z[0]``

-(1/4608)*V[0]^2+(1/4608)*W[0]^2+(1/2304)*U[0]*W[0]+(1/2304)*V[0]*Z[0]

(1)

fa[2] := (1/153600)*(45*U[0]^2*V[0]-50*U[0]*V[0]*W[0]-50*U[0]*W[0]*Z[0]-5*V[0]*Z[0]^2-16*Z[0]*r[0]^2)/r[0]

(1/153600)*(45*U[0]^2*V[0]-50*U[0]*V[0]*W[0]-50*U[0]*W[0]*Z[0]-5*V[0]*Z[0]^2-16*Z[0]*r[0]^2)/r[0]

(2)

fa[3] := -(1/153600)*(5*U[0]^2*W[0]+50*U[0]*V[0]*Z[0]-16*U[0]*r[0]^2-50*V[0]*W[0]*Z[0]-45*W[0]*Z[0]^2)/r[0]

-(1/153600)*(5*U[0]^2*W[0]+50*U[0]*V[0]*Z[0]-16*U[0]*r[0]^2-50*V[0]*W[0]*Z[0]-45*W[0]*Z[0]^2)/r[0]

(3)

fa[4] := (1/115200)*(25*U[0]*V[0]*W[0]-25*V[0]*W[0]^2-160*V[0]*r[0]^2-25*W[0]^2*Z[0]-64*Z[0]*r[0]^2)/r[0]

(1/115200)*(25*U[0]*V[0]*W[0]-25*V[0]*W[0]^2-160*V[0]*r[0]^2-25*W[0]^2*Z[0]-64*Z[0]*r[0]^2)/r[0]

(4)

fa[5] := -(1/115200)*(25*U[0]*V[0]^2+64*U[0]*r[0]^2-25*V[0]^2*W[0]-25*V[0]*W[0]*Z[0]-160*W[0]*r[0]^2)/r[0]

-(1/115200)*(25*U[0]*V[0]^2+64*U[0]*r[0]^2-25*V[0]^2*W[0]-25*V[0]*W[0]*Z[0]-160*W[0]*r[0]^2)/r[0]

(5)

``

fa[6] := (11/57600)*U[0]^2+(1/768)*V[0]^2+(1/768)*W[0]^2+(11/57600)*Z[0]^2+(1/600)*r[0]^2

(11/57600)*U[0]^2+(1/768)*V[0]^2+(1/768)*W[0]^2+(11/57600)*Z[0]^2+(1/600)*r[0]^2

(6)

``

``

Download system.mw

Hi!

I want to implement to attached fortran program in Maple 2015 (the procudure starts at the end of the first page). 

localmin.pdf

The code does not seem dificult, but I don't know how to interpret the instructions "go to" of fortran. Reading Maple's doc about the "goto" instruction, I don't understand how to implement it.

Can somebody help with this code, please?

Many thanks in advance for your comments.

In the following I show two functions f and g where ShowSolution(Limit(..)) works for f but not for g. Any idea why?

with(Student[Calculus1]);

f := x^2 + x:
limit(f, x = -infinity);
infinity
ShowSolution(Limit(f, x = -infinity), maxsteps = 100);
// step-by-step solution is produced

g := x^2 + 3*x:
limit(g, x = -infinity);
infinity
ShowSolution(Limit(g, x = -infinity), maxsteps = 100);
Error, (in Student:-Calculus1:-ShowSolution) unable to compute solution steps

Maple is able to change f into an equivalent expression by factoring out x^2, but does not seem to be able to do it with g.

I attach two screenshots that show this curious behaviour.

An interval graph is an undirected graph formed from a set of intervals on the real line, with a vertex for each interval and an edge between vertices whose intervals intersect. Recognizing interval graphs  is in linear time. 

Seven intervals on the real line and the corresponding seven-vertex interval graph.

 

 

IsIntervalGraph(G) (was introduced in Maple 2022) tests whether the graph G could be expressed as an interval graph for some collection of intervals. If a graph is an interval graph, then the intervals corresponding to its vertices should be given. However,  IsIntervalGraphdoes not provide such an option, which makes it impossible for me to verify the correctness of the results or see more information.

with(GraphTheory):
G:=Graph({{1,2},{1,3},{1,4}, {4,2},{4,3}});
IsIntervalGraph(G)

true

Therefore, an option like the "certificate" option in SageMath needs to be provided.

g = Graph({1: [2, 3, 4], 4: [2, 3]})
g.show()
g.is_interval()
g.is_interval(certificate=True)

(True, {1: (0, 5), 2: (4, 6), 3: (1, 3), 4: (2, 7)})

 

 

I have looked at the source code of IsIntervalGraphand it seems to be checking whether the complement graph is comparability. I am not sure if this transformation can still find the corresponding intervals.

print(IsIntervalGraph)
proc(G::GRAPHLN)::truefalse;
    local G2;
    G2 := GraphTheory:-GraphComplement(G);
    return GraphTheory:-IsComparabilityGraph(G2);
end proc

print(IsComparabilityGraph)
proc (G::GRAPHLN, { transitiveorientation::truefalse := false, 

   usecached::truefalseFAIL := FAIL }, ` $`)::truefalse; local 

   iscomparability, L, A, result, V; A := op(4, G); result := 

   FindTransitiveOrientation(A, transitiveorientation); if 

   result = NULL then false elif transitiveorientation then V 

   := op(3, G); true, GraphTheory:-Graph(V, result) else true 

   end if end proc

 

By the way, can the  "FindTransitiveOrientation "  in the function IsComparabilityGraph be used by the user?

Hello, 
I have an simple exmple of expresion : 

restart;
v1 := sin(c)*sin(a)(a - b);
                  v1 := sin(a)(-b + a) sin(c)

v2 := sin(c1)*sin(a1)(-a + b);
                 v2 := sin(a1)(-a + b) sin(c1)

sort(v1);
                      sin(c) sin(a)(a - b)

sort(v2);
                    sin(c1) sin(a1)(-a + b)


what i want  is :  sort(v2); --->     sin(c1) sin(a1)(b-a)

That mean i want the "+" sign comme alwase first

Merci

https://www.maplesoft.com/support/help/Maple/view.aspx?path=copyright lists some external packages used by Maple, but it appears that certain libraries are of outdated (albeit not obsolete) versions. For example, Maple 2023 uses FLINT 2.6.3 (released in 2020), but the newest stable version of FLINT is 2.9.0. Also, Maple 2023 uses Z3 4.5.0 (released in 2016), but the newest stable version of Z3 is 4.12.1. In addition, Maple 2023 uses GCC 10.2.0 (released in 2020), but the newest stable version of GCC is 13.1. Since they are distributed under free licenses, I can download the most recent (or even nightly) release's source code, but how can I replace the old components that Maple uses by the latest ones by myself?

First 204 205 206 207 208 209 210 Last Page 206 of 2428