MaplePrimes Questions

Is there a way of ploting y=x^x for when x<0 and y is a noncomplex solution?

 

i have a corei7 laptop and i want maple to use all of my cpu cores in paraller,what should i do exactly ? in there anyway to use them without using grid computing toolbox ? or how to manage it with grid computing toolbox? i want maple use all of my cpu power during computation, tnx for help 

another interesting bug in mapleprimes, when i created new tage , i face this error : 

Only users with at least 250 reputation can create new tags, please remove or replace these tags: computing !
i have 305 but i could not do it ! :| .

hello , i have a metric that i know its ricci scalar (R=2m^2-2w^2), but maple obtains zero. i dont know where is my problem.

metric.mw

 

 

Best regards

I have some questions about Mobius Project:

  1. What is the license of the worksheets posted on Mobius Project's website?
    I can not find any information about the license of the materials submitted to the Mobius Project.
    Is my worksheets are protected by intellectual property laws and copyrighted by me?
    Or it is freely available for any use for everyone?
  2. What are the terms of use of Mobius Project and its service? I can not find it anywhere.
  3. What is the copyright for http://mobius.maplesoft.com/?
    I do not see any copyright in the footer of the site or elsewhere.
    So, no copyrights mean the materials/resources on this website can be freely copied/used by anyone?

I thought I could plot this by the graph below but I got an error...WHY is that?

with pointplot3d and 14,000 points when I enter symbol=point I get an empty plot.

Only when I set symbolsize=1 (a point) do I get points appearing in the graph.  Bug?

Hello everyone,

I came across an image/photo and thought, It will be fun to try it in maple.

Except plotting a few triangles and circles, I couldn't make it. 

Here is the image. 

 

 

Have a look please.

 

Cheers!

Bonjour,

Comment calculer, sous maple, le crochet de Poisson des deux fonctions suivantes :

f:=(x,y,u,v)->x*u+y*v;

g:=(x,y,u,v)->x*y^2+v^3;

 

Merci d'avance,

Gérard.

Dear Users

I have a problem for solving a system of linear equations that arise from collocation method for getting approximate solution of a coupled PDE and ODE in Food engineering problems.

When it reach to the fsolve command it takes long time!!!

I used maple 13.

If kindly is possible, please help me in this special case.

With kind regards,

Emran Tohidi.

 

> Restart;
print(`output redirected...`); # input placeholder
> h := 50; hm := 0.1e-3; rhodp := 1500; Y := 0.5e-1; T0 := 20; rhoair := 1.2041; Dair := 0.2e-8; DD := 0.85e-9; C := 3240; L := 0.4e-1; X0 := 1.5; V := .2; delta := 0.2e-2; Yair := 0.5e-1; nu := .2; Tair := 60; Hnu := 2400; rho := 1359; tt := 3;
%;
> N := 5; Digits := 20;
> X := sum(sum(a[m, n]*z^m*t^n, m = 0 .. N), n = 0 .. N); X := unapply(X, z, t); Xt := diff(X(z, t), `$`(t, 1)); Xt := unapply(Xt, z, t); Xz := diff(X(z, t), `$`(z, 1)); Xz := unapply(Xz, z, t); Xzz := diff(X(z, t), `$`(z, 2)); Xzz := unapply(Xzz, z, t); T := sum(b[n]*t^n, n = 0 .. (N+1)^2-1); T := unapply(T, t); Tt := diff(T(t), `$`(t, 1)); Tt := unapply(Tt, t); aw := exp(.914)*X(z, t)^.5639-.5*exp(1.828)*X(z, t)^(2*.5639); aw := unapply(aw, z, t); TT := 8.3036+3816.44*(1+T(t)/(46.13)+T(t)^2/46.13^2)/(46.13); TT := unapply(TT, t); pwv := 133.3*(1+TT(t)+(1/2)*TT(t)^2); pwv := unapply(pwv, t); Yi := .622*pwv(t)*aw(z, t)*(1+pwv(t)*aw(z, t)/rho+(pwv(t)*aw(z, t)/rho)^2)/rho; Yi := unapply(Yi, z, t);
%;
> S1 := {seq(seq(Xt(delta*i/N, tt*j/N)-DD*Xzz(delta*i/N, tt*j/N) = 0, i = 1 .. N-1), j = 1 .. N)};
> S2 := {seq(DD*rhodp*Xz(delta, tt*j/N)+hm*rhoair*Yi(delta, tt*j/N) = 0, j = 0 .. N)};
> S3 := {seq(Xz(0, tt*j/N) = 0, j = 0 .. N)};
> S4 := {seq(X(delta*i/N, 0) = 0, i = 1 .. N-1)};
> S5 := {seq(seq(rho*delta*C*Tt(tt*j/N)-h*(Tair-T(tt*j/N))+hm*Hnu*rhoair*(Yair-Yi(delta*i/N, tt*j/N)) = 0, j = 1 .. N), i = 0 .. N)};
print(`output redirected...`); # input placeholder
> S6 := {seq(rho*delta*C*Tt(0)-h*(Tair-T0)+hm*Hnu*rhoair*(Yair-Yi(delta*i/N, 0)) = 0, i = 0 .. N)};
%;
> SS := `union`(`union`(`union`(`union`(`union`(S1, S2), S3), S4), S5), S6);
> sol := fsolve(SS);

Hello, I have two plots:

Is it possible to display differene between these plots?

Bonjour,

Comment résoudre le système algébrique suivant :

f1:=(1+mu+nu)*(mu^2-2*mu*alpha+2*mu+2*mu*alpha*nu-2*alpha+1+alpha^2+2*alpha^2*nu+nu^2*alpha^2-2*nu*alpha)*(lambda*alpha^2-3*mu*alpha*nu^2+2*nu^2*mu-4*lambda*alpha*nu-mu^2*alpha*nu^2-lambda*alpha^3-nu*alpha+lambda*alpha-4*mu*alpha*nu+3*mu^2*nu-2*mu^3*alpha*nu+3*mu*nu-5*mu^2*alpha*nu+3*lambda*nu+mu^3*nu+3*nu^2*alpha^3*mu-5*lambda*mu^2*alpha*nu+3*lambda*alpha^3*mu-9*lambda*alpha*mu*nu+6*lambda*mu*nu+3*lambda*mu^2*nu-lambda+nu^2+nu+nu^3*alpha^3*mu-3*mu^2*alpha^2*nu-5*nu^2*alpha^2*mu-4*mu*alpha^2*nu-3*lambda*alpha^3*nu^2-3*lambda*alpha^3*nu-3*lambda*mu^2-nu^3*alpha+nu^2*mu^2+3*mu*alpha^3*nu+5*lambda*mu^2*alpha-5*lambda*mu^2*alpha^2+2*mu^2*alpha^3*nu-3*lambda*mu+mu^2*alpha^3*nu^2+alpha^3*mu+alpha^3*mu^2+3*lambda*alpha^3*nu^2*mu+6*lambda*alpha^3*mu*nu+5*lambda*alpha*nu^2*mu-9*lambda*alpha^2*mu*nu+5*lambda*mu^2*alpha^2*nu-5*lambda*alpha*nu^2-4*lambda*alpha^2*mu+mu*alpha*nu^3-2*nu^2*alpha+mu^3*alpha^2*nu-lambda*mu^3-mu^2*alpha^2*nu^2-lambda*alpha^3*nu^3-5*lambda*alpha^2*mu*nu^2+4*alpha^2*nu*lambda+5*lambda*alpha^2*nu^2+2*lambda*alpha^2*nu^3-2*nu^3*alpha^2*mu+2*lambda*mu^3*alpha-mu*alpha^2-2*mu^2*alpha^2-mu^3*alpha^2+4*lambda*mu*alpha);

f2:=(lambda+mu+nu)*(nu^2+2*mu*alpha*nu+mu^2*alpha^2+2*lambda*nu-2*lambda*alpha*nu-2*lambda*mu*alpha+2*lambda*alpha^2*mu+lambda^2*alpha^2-2*lambda^2*alpha+lambda^2)*(lambda^3*alpha^3*nu-5*mu*alpha*nu^2+3*nu^2*mu-mu^2*alpha*nu^2+lambda^3*mu-3*lambda*nu^2+mu^3*alpha*nu+5*mu^2*alpha*nu-3*lambda*mu^2*alpha*nu+lambda^2*mu^2-nu^3+mu*nu^3-3*lambda*alpha^3*mu^2-3*lambda^2*nu-9*lambda*alpha*mu*nu-lambda^3+6*lambda*mu*nu+2*lambda*mu^2*nu+3*lambda^2*mu-3*lambda^2*alpha^3*mu-5*mu^2*alpha^2*nu+5*nu^2*alpha^2*mu+mu^3*alpha^3*nu+3*lambda*nu^2*mu+2*nu^3*alpha+nu^2*mu^2-mu^3*alpha^3-5*lambda*mu^2*alpha+5*lambda*mu^2*alpha^2+3*lambda^2*nu*mu+3*mu^2*alpha^3*nu+mu^2*alpha^3*nu^2+2*lambda*alpha^3*nu^2*mu+6*lambda*alpha^3*mu*nu+3*lambda*alpha^3*mu^2*nu-5*lambda*alpha*nu^2*mu-9*lambda*alpha^2*mu*nu-5*lambda*mu^2*alpha^2*nu+5*lambda*alpha*nu^2-lambda^3*alpha*mu-4*lambda^2*alpha^2*nu-2*mu*alpha*nu^3+3*lambda^2*alpha^3*mu*nu-2*lambda^2*alpha*mu^2-4*lambda^2*alpha*mu-2*mu^3*alpha^2*nu-mu^2*alpha^2*nu^2+3*lambda^2*alpha^3*nu+lambda^2*alpha^3*nu^2-3*lambda*alpha^2*mu*nu^2+lambda^3*alpha^2+lambda^3*alpha-4*lambda^2*alpha^2*mu*nu-4*lambda^2*alpha*nu*mu-5*lambda*alpha^2*nu^2+4*lambda^2*alpha*nu-lambda*alpha^2*nu^3+nu^3*alpha^2*mu-lambda*mu^3*alpha-lambda^3*alpha^3+2*mu^3*alpha^2+4*lambda^2*alpha^2*mu-lambda^3*alpha^2*nu-2*lambda^2*alpha^2*nu^2);

f3:=(1+nu+lambda)*(nu^2*alpha^2-2*nu^2*alpha+nu^2-2*lambda*alpha*nu+2*lambda*nu-2*nu*alpha+2*alpha^2*nu+lambda^2+2*lambda*alpha+alpha^2)*(2*lambda*alpha^2+4*mu*alpha*nu^2-3*nu^2*mu+3*lambda*alpha*nu-lambda*alpha^3+lambda^3*mu+nu*alpha-3*lambda*nu^2-lambda*alpha+5*mu*alpha*nu-2*lambda*nu+3*nu^2*alpha^3*mu-nu^3+mu*nu^3-3*lambda*alpha^3*mu-3*lambda^2*nu+9*lambda*alpha*mu*nu-lambda^3-6*lambda*mu*nu-3*lambda^2*mu-nu^2+nu^3*alpha^3*mu-4*nu^2*alpha^2*mu-5*mu*alpha^2*nu-3*lambda*alpha^3*nu^2-3*lambda*alpha^3*nu+3*lambda*nu^2*mu+nu^3*alpha-lambda^2+3*mu*alpha^3*nu+3*lambda^2*nu*mu+alpha^3*mu-3*lambda*alpha^3*nu^2*mu-6*lambda*alpha^3*mu*nu-4*lambda*alpha*nu^2*mu+9*lambda*alpha^2*mu*nu+4*lambda*alpha*nu^2-2*lambda^3*alpha*mu+3*lambda^2*alpha^2*nu+5*lambda*alpha^2*mu-mu*alpha*nu^3+5*lambda^2*alpha*mu-lambda^2*alpha^3+2*nu^2*alpha+lambda^2*alpha^2-2*lambda^2*alpha^3*nu-lambda^2*alpha^3*nu^2-lambda*alpha^3*nu^3+4*lambda*alpha^2*mu*nu^2-lambda^3*alpha^2+2*lambda^3*alpha+5*alpha^2*nu*lambda+5*lambda^2*alpha^2*mu*nu-5*lambda^2*alpha*nu*mu+lambda^2*alpha+4*lambda*alpha^2*nu^2+5*lambda^2*alpha*nu+lambda*alpha^2*nu^3-nu^3*alpha^2*mu-2*mu*alpha^2-5*lambda^2*alpha^2*mu+lambda^3*alpha^2*nu+2*lambda^2*alpha^2*nu^2-5*lambda*mu*alpha);

f4:=(1+mu+lambda)*(mu^2*alpha^2-2*mu^2*alpha+mu^2-2*lambda*mu*alpha+2*mu+2*lambda*alpha^2*mu-2*mu*alpha+lambda^2*alpha^2+2*lambda*alpha+1)*(lambda^3*alpha^3*nu-lambda*alpha^2+5*lambda*alpha*nu-2*nu*alpha+2*lambda*alpha-5*mu*alpha*nu+3*mu^2*nu-mu^3*alpha*nu+3*mu*nu-4*mu^2*alpha*nu-3*lambda*nu+mu^3*nu+4*lambda*mu^2*alpha*nu-lambda^2*mu^2-3*lambda*alpha^3*mu^2-2*lambda*alpha^3*mu+9*lambda*alpha*mu*nu-6*lambda*mu*nu-3*lambda*mu^2*nu-2*lambda^2*mu-lambda+nu-3*lambda^2*alpha^3*mu+4*mu^2*alpha^2*nu+5*mu*alpha^2*nu+mu^3*alpha^3*nu-3*lambda*mu^2-lambda^2-mu^3*alpha^3+4*lambda*mu^2*alpha+4*lambda*mu^2*alpha^2-3*mu^2*alpha^3*nu-3*lambda*mu-alpha^3*mu^2-6*lambda*alpha^3*mu*nu+3*lambda*alpha^3*mu^2*nu+9*lambda*alpha^2*mu*nu-4*lambda*mu^2*alpha^2*nu+lambda^3*alpha*mu+5*lambda^2*alpha^2*nu+3*lambda*alpha^2*mu+3*lambda^2*alpha^3*mu*nu+2*lambda^2*alpha*mu^2+3*lambda^2*alpha*mu-lambda^2*alpha^3-mu^3*alpha^2*nu-lambda*mu^3+lambda^2*alpha^2-3*lambda^2*alpha^3*nu+2*lambda^3*alpha^2-lambda^3*alpha-5*alpha^2*nu*lambda-5*lambda^2*alpha^2*mu*nu+5*lambda^2*alpha*nu*mu+lambda^2*alpha-5*lambda^2*alpha*nu+lambda*mu^3*alpha-lambda^3*alpha^3+mu*alpha^2+2*mu^2*alpha^2+mu^3*alpha^2+5*lambda^2*alpha^2*mu-2*lambda^3*alpha^2*nu+5*lambda*mu*alpha);

 

Merci d'avance,

Gérard.

 

 

I don't understand how to create better parameters. Why is the graph not flush with the image (it appears that the graph is a set of points and NOT lines)

 

From the manual: coeffs - extract all coefficients of a multivariate polynomial. Is there a way of doing the reverse (giving the coefficients, obtain the multivariate polynomial) ? For univariate polynomials I know that the answer is yes because  PolynomialTools[FromCoefficientList] - return a univariate polynomial from list of coefficients. But what about multivariate polynomials?

ACP.mw

 

hi all

trying to modify some kitonum code to get the smallest solution, d=3,515,820, but i have problem....

http://en.wikipedia.org/wiki/Archimedes'_cattle_problem

 

Hello,
I'm working on coupled differential equation.
The first system is : 
y1''+y1'+y1=q1
q1''+e(q12-1)q1'+q1=y1"

And the second one : 
y2''+y2'+y2=q2
q2''(t)+e(q22-1)q2'(t)+q2(t) = y2"+f(P) q1(t-tau)

This is a parametric system, f(P) and tau(P) are given function of the parameters P.
e is a constant

I have solved the first system with dsolve (using numeric option).
But when I try to solve the second one (with dsolve, numeric, setting P as a parameter), maple returns an error : 

"Error, (in dsolve/numeric/process_input) input system must be an ODE system, got independent variables {t, t-1}"

I think Maple doesn't like " q1(t-tau)".
I have tried to create a new function q where :
q(t)=q1(t-tau)
But Maple returns the same error.

How can I fix it ?

Thanks for reading

EDIT : I have read there is no function in maple that solve delay differential equation.
But this is not a true DDE because q2 has no effect on q1
So I hope there is a way to "fool" maple and still use dsolve.

EDIT 2 :
I have found how to make it works.
I was using dsolve with the option compile (which increase (a lot) the efficiency of computation).
I delete this option and that's working.
Nevertheless, without the option compile, the computation is very very slow.
MapleHelp recommands to combine the 2 systems for more efficiency. But, when I combine, maple return the previous error.
How can I make it quicker ?

Here is the code : 

test_2_cylindre_sans_compile.mw 

First 1421 1422 1423 1424 1425 1426 1427 Last Page 1423 of 2427