MaplePrimes Questions

¿Does Maple 17 in that way has helped in the development of complex geometric problems?

¿que libros me recomiendan para aprender mas sobre matematica computacional?  

 

Hello every one,

restart;with(stats):

with(stats[statplots]):
with(plots):

x1_values:=[0.1, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80];

x2_values:=[1, 2, 3, 4, 5, 6, 7, 8];

x3_values:=[11, 12, 13, 14, 15, 16, 17, 18];

x4_values:=[10, 20, 30, 40, 50, 60, 70, 80];

y_values:=[30, 40, 60, 70, 90, 120, 150, 200];

How to fit the above data into the following equation

y=a+b*x1+c*x2+d*x3+e*x4+f*x1^2+g*x2^2+h*x3^2+i*x4^2+j*x1*x2+k*x1*x3+l*x1*x4

+m*x2*x3+n*x2*x4+p*x3*x4;

Thanks

 

 

 

@Markiyan Hirnyk 

 

First try, i change to 

result1 := Optimization:-Minimize([ans>=0, ans<=0],initialpoint=[.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003], feasibilitytolerance=0.01);

Error, (in Optimization:-Minimize) objective function must be an algebraic expression or procedure

Second try, i change to use ans for >=0, ans2 <=0

ans:=proc(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12) sol(parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12]);
add((X(tim[i])-x11[i])^2,i=1..N)+add((Y(tim[i])-y11[i])^2,i=1..N)+add((Z(tim[i])-z11[i])^2,i=1..N)+add((U(tim[i])-u11[i])^2>=0,i=1..N)
end proc;
ans2:=proc(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12) sol(parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12]);
add((X(tim[i])-x11[i])^2,i=1..N)+add((Y(tim[i])-y11[i])^2,i=1..N)+add((Z(tim[i])-z11[i])^2,i=1..N)+add((U(tim[i])-u11[i])^2<=0,i=1..N)
end proc;
ans(.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003);
result1 := Optimization:-Minimize([ans, ans2],initialpoint=[.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003], feasibilitytolerance=0.01);

Error, (in Optimization:-Minimize) objective function must be an algebraic expression or procedure

 

 

x11 := [0.208408965651696e-3, -0.157194487523421e-2, -0.294739401402979e-2, 0.788206708183853e-2, 0.499394753201753e-2, 0.191468321959759e-3, 0.504980449104750e-2, 0.222150494088535e-2, 0.132091821964287e-2, 0.161118434883258e-2, -0.281236534046873e-2, -0.398055875132037e-2, -0.111753680372819e-1, 0.588868146012489e-2, -0.354191562612469e-2, 0.984082837373291e-3, -0.116041186868374e-1, 0.603027845850267e-3, -0.448778128168742e-2, -0.127561485214862e-1, -0.412027655195339e-2, 0.379387381798949e-2, -0.602550446997765e-2, -0.605986284736216e-2, -0.751396992404410e-2, 0.633613424008655e-2, -0.677581832613623e-2]:
y11 := [ -21321.9719565717, 231.709204951251, 1527.92905167191, -32.8508507060675, 54.9408176234139, -99.4222178124229, -675.771433486265, 42.0838668074923, -12559.3183308951, 5.21412214166344*10^5, 1110.50031772203, 3.67149699000155, -108.543878970269, -8.48861069398811, -521.810552387313, 26.4792411876883, -8.32240296737599, -1085.40982521906, -44.1390030597906, -203.891397612798, -56.3746416571417, -218.205643256096, -178.991498697065, -42.2468018350386, .328546922634921, -1883.18308996621, 111.747881085748]:
z11 := [ 1549.88755331800, -329.861725802688, 8.54200301129155, -283.381775745327, -54.5469129127573, 1875.94875597129, -16.2230517860850, 6084.82381954832, 1146.15489803104, -456.460512914647, 104.533252701641, 16.3998365630734, 11.5710907832054, -175.370276462696, 33.8045539958636, 2029.50029336951, 1387.92643570857, 9.54717543291120, -1999.09590358328, 29.7628085078953, 2.58210333216737*10^6, 57.7969622731082, -6.42551196941394, -8549.23677077892, -49.0081775323244, -72.5156360537114, 183.539911458475]: 
u11 := [7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7];
a1 := Diff(x1(t),t) = k1*x1(t)+ k2*y1(t)+ k3*z1(t)+k4*u1(t);
b1 := Diff(y1(t),t) = k5*x1(t)+ k6*y1(t)+ k7*z1(t)+k8*u1(t);
c1 := Diff(z1(t),t) = k9*x1(t)+ k10*y1(t)+ k11*z1(t)+k12*u1(t);
d1 := Diff(u1(t),t) = 0;
ICS:=x1(1)=x11[1],y1(1)=y11[1],z1(1)=z11[1],u1(1)=u11[1];
sol:=dsolve({a1,b1,c1,d1, a2,b2,c2,d2,ICS}, numeric, method=rkf45, parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12],output=listprocedure);
X,Y,Z,U:=op(subs(sol,[x1(t),y1(t),z1(t),u1(t)]));
tim := [seq(n, n=1..27)];
N:=nops(tim):
ans:=proc(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12) sol(parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12]);
add((X(tim[i])-x11[i])^2,i=1..N)+add((Y(tim[i])-y11[i])^2,i=1..N)+add((Z(tim[i])-z11[i])^2,i=1..N)+add((U(tim[i])-u11[i])^2,i=1..N)
end proc;
ans(.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003);
result1 := Optimization:-Minimize([ans>=0, ans<=0],initialpoint=[.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003], feasibilitytolerance=0.01);

Hi everyone, I'm trying to print out Collatz's Conjecture's steps for any given value with the following code but it takes forever and prints nothing. Any idea on how I can get it working ?

 

checkCollatzValue:=proc(val) local res, remaining;
while res <> 1 do
remaining = irem(val, 2); remaining;
if remaining = 0 then res = val / 2; else res = val * 3 + 1; fi;
res;
od;
end proc;

In my research a I need to solve the linear equation (getting its null space) under some constraints.

The matrix is given below:

 

The constraints shall be (x[1]...x[16]>0, x[17]...x[20] arbitary...)

The solutions shall actually be a canonical combination of a lot of vectors, (canonical combination means possitive sums of vectors). And I wish to get those vectors. is there a way that I could achieve this by Maple?

> restart;

> with(plots):

> dp := proc(X,Y)

>     X[1]*Y[1]+X[2]*Y[2];

> end:

> nrm := proc(X)

>     sqrt(dp(X,X));

> end:

> r:=[3*cos(u),3*sin(u)];

> lambda:=1;

>  f:=proc(X)

> local Xu,s,T,N,kappa,v,n,pr,v1,z;

> Xu := [diff(X[1],u),diff(X[2],u)];

> s := nrm(Xu);

> T:=[diff(X[1],u)/s,diff(X[2],u)/s];

> N:=[-T[2],T[1]];

> kappa:=simplify(dp(diff(T,u),N))/s;

> v:=int(kappa,u=0..u);

> z:=v;

> if z=0 then -1 else  v1:=z fi;

> n:=[cos(v1)*N[1]+sin(v1)*T[1],cos(v1)*N[2]+sin(v1)*T[2]];

> pr:=([r[1]+lambda*n[1],r[2]+lambda*n[2]]);

> end:

> plot([f(r)[1],f(r)[2],-18..18]);

 

can you please help me , I'm not sure what is going wrong.

When you use the slider without Do(%MathContainer1 = StandardError(Variance, R)):
everything works ok but when you add Do(%MathContainer1 = StandardError(Variance, R)):
Maple Crashes.....

Strange...

LL_102)_Covariance_M.mw

@Markiyan Hirnyk 

First try, i change to 

result1 := Optimization:-Minimize([ans>=0, ans<=0],initialpoint=[.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003], feasibilitytolerance=0.01);

Error, (in Optimization:-Minimize) objective function must be an algebraic expression or procedure

Second try, i change to use ans for >=0, ans2 <=0

ans:=proc(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12) sol(parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12]);
add((X(tim[i])-x11[i])^2,i=1..N)+add((Y(tim[i])-y11[i])^2,i=1..N)+add((Z(tim[i])-z11[i])^2,i=1..N)+add((U(tim[i])-u11[i])^2>=0,i=1..N)
end proc;
ans2:=proc(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12) sol(parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12]);
add((X(tim[i])-x11[i])^2,i=1..N)+add((Y(tim[i])-y11[i])^2,i=1..N)+add((Z(tim[i])-z11[i])^2,i=1..N)+add((U(tim[i])-u11[i])^2<=0,i=1..N)
end proc;
ans(.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003);
result1 := Optimization:-Minimize([ans, ans2],initialpoint=[.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003], feasibilitytolerance=0.01);

Error, (in Optimization:-Minimize) objective function must be an algebraic expression or procedure

 

 

x11 := [0.208408965651696e-3, -0.157194487523421e-2, -0.294739401402979e-2, 0.788206708183853e-2, 0.499394753201753e-2, 0.191468321959759e-3, 0.504980449104750e-2, 0.222150494088535e-2, 0.132091821964287e-2, 0.161118434883258e-2, -0.281236534046873e-2, -0.398055875132037e-2, -0.111753680372819e-1, 0.588868146012489e-2, -0.354191562612469e-2, 0.984082837373291e-3, -0.116041186868374e-1, 0.603027845850267e-3, -0.448778128168742e-2, -0.127561485214862e-1, -0.412027655195339e-2, 0.379387381798949e-2, -0.602550446997765e-2, -0.605986284736216e-2, -0.751396992404410e-2, 0.633613424008655e-2, -0.677581832613623e-2]:
y11 := [ -21321.9719565717, 231.709204951251, 1527.92905167191, -32.8508507060675, 54.9408176234139, -99.4222178124229, -675.771433486265, 42.0838668074923, -12559.3183308951, 5.21412214166344*10^5, 1110.50031772203, 3.67149699000155, -108.543878970269, -8.48861069398811, -521.810552387313, 26.4792411876883, -8.32240296737599, -1085.40982521906, -44.1390030597906, -203.891397612798, -56.3746416571417, -218.205643256096, -178.991498697065, -42.2468018350386, .328546922634921, -1883.18308996621, 111.747881085748]:
z11 := [ 1549.88755331800, -329.861725802688, 8.54200301129155, -283.381775745327, -54.5469129127573, 1875.94875597129, -16.2230517860850, 6084.82381954832, 1146.15489803104, -456.460512914647, 104.533252701641, 16.3998365630734, 11.5710907832054, -175.370276462696, 33.8045539958636, 2029.50029336951, 1387.92643570857, 9.54717543291120, -1999.09590358328, 29.7628085078953, 2.58210333216737*10^6, 57.7969622731082, -6.42551196941394, -8549.23677077892, -49.0081775323244, -72.5156360537114, 183.539911458475]:
u11 := [7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7];
a1 := Diff(x1(t),t) = k1*x1(t)+ k2*y1(t)+ k3*z1(t)+k4*u1(t);
b1 := Diff(y1(t),t) = k5*x1(t)+ k6*y1(t)+ k7*z1(t)+k8*u1(t);
c1 := Diff(z1(t),t) = k9*x1(t)+ k10*y1(t)+ k11*z1(t)+k12*u1(t);
d1 := Diff(u1(t),t) = 0;
ICS:=x1(1)=x11[1],y1(1)=y11[1],z1(1)=z11[1],u1(1)=u11[1];
sol:=dsolve({a1,b1,c1,d1, a2,b2,c2,d2,ICS}, numeric, method=rkf45, parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12],output=listprocedure);
X,Y,Z,U:=op(subs(sol,[x1(t),y1(t),z1(t),u1(t)]));
tim := [seq(n, n=1..27)];
N:=nops(tim):
ans:=proc(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12) sol(parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12]);
add((X(tim[i])-x11[i])^2,i=1..N)+add((Y(tim[i])-y11[i])^2,i=1..N)+add((Z(tim[i])-z11[i])^2,i=1..N)+add((U(tim[i])-u11[i])^2,i=1..N)
end proc;
ans(.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003);
result1 := Optimization:-Minimize([ans>=0, ans<=0],initialpoint=[.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003], feasibilitytolerance=0.01);

How can I get the Standard Errors of the covariance matrix in Maple?
I can simulate a covariance matrix in Maple as follows:

restart:
with(Statistics):
with(LinearAlgebra):

R := RandomMatrix(4, 4, generator = -15 .. 15, outputoptions = [datatype = float[8]]);
CovarianceMatrix(R);

but how do I find the standard errors?

EDIT:EDIT: I found what I was looking for. Thanks!

 

eq:=(V^(1-r/(r-s))*V*k/(r-2*s)+_C1)*V^(r/(r-s))=0;

 

equation 1

 

solve(eq,C1);

 

Can anyone tell me why nothing happens when I solve the above equation for C1.

I've been coming across this problem a few times lately, but sometimes when the equations are less complicated it does work from time to time. 

Any help would be greatly appreciated.

 

EDIT:  Thanks Markiyan Hirnyk

But I'm still having some trouble.

 

f:=t->(-r*t+s*t+V)^(r/(r-s));

eq2:=diff(C*f(t),t)+C*f(t)*r/(V+s*t-r*t)=s*k*t;

solve(eq2,C);

 


When I try solving eq2 nothing happens. 


This time C is just a variable I used and not one Maple generated.

So why doesn't it work with this particular equation?

 

 

hi,

     there is a common  differential equation in my maple note,the solution of the eq. can be expressed by

associated Legendre function(s),but i get a result by hypergeometric representation.how i can translate the later into a  single Legendre fun?

 Thank you in advance  

ode := 'sin(theta)*(diff(sin(theta)*(diff(Theta(theta), theta)), theta))'/Theta(theta)+l*(l+1)*sin(theta)^2 = m^2

sin(theta)*(diff(sin(theta)*(diff(Theta(theta), theta)), theta))/Theta(theta)+l*(l+1)*sin(theta)^2 = m^2

(1)

dsolve(ode)

Theta(theta) = _C1*((1/2)*cos(2*theta)-1/2)^((1/2)*m)*sin(2*theta)*hypergeom([(1/2)*m+(1/2)*l+1, (1/2)*m-(1/2)*l+1/2], [3/2], (1/2)*cos(2*theta)+1/2)/(1-cos(2*theta))^(1/2)+_C2*hypergeom([(1/2)*m-(1/2)*l, (1/2)*m+(1/2)*l+1/2], [1/2], (1/2)*cos(2*theta)+1/2)*(-2*cos(2*theta)+2)^(1/2)*((1/2)*cos(2*theta)-1/2)^((1/2)*m)/(1-cos(2*theta))^(1/2)

(2)

`assuming`([simplify(dsolve(ode))], [l::posint, m::integer, l >= m])

Theta(theta) = ((1/2)*cos(2*theta)-1/2)^((1/2)*m)*(sin(2*theta)*hypergeom([(1/2)*m+(1/2)*l+1, (1/2)*m-(1/2)*l+1/2], [3/2], (1/2)*cos(2*theta)+1/2)*_C1+2^(1/2)*(1-cos(2*theta))^(1/2)*hypergeom([(1/2)*m-(1/2)*l, (1/2)*m+(1/2)*l+1/2], [1/2], (1/2)*cos(2*theta)+1/2)*_C2)/(1-cos(2*theta))^(1/2)

(3)

convert(Theta(theta) = _C1*((1/2)*cos(2*theta)-1/2)^((1/2)*m)*sin(2*theta)*hypergeom([(1/2)*m+(1/2)*l+1, (1/2)*m-(1/2)*l+1/2], [3/2], (1/2)*cos(2*theta)+1/2)/(1-cos(2*theta))^(1/2)+_C2*hypergeom([(1/2)*m-(1/2)*l, (1/2)*m+(1/2)*l+1/2], [1/2], (1/2)*cos(2*theta)+1/2)*(-2*cos(2*theta)+2)^(1/2)*((1/2)*cos(2*theta)-1/2)^((1/2)*m)/(1-cos(2*theta))^(1/2), `2F1`)

Theta(theta) = (1/2)*_C1*((1/2)*cos(2*theta)-1/2)^((1/2)*m)*sin(2*theta)*Pi^(1/2)*GAMMA(-(1/2)*m-(1/2)*l)*JacobiP(-(1/2)*m-(1/2)*l-1, 1/2, m, -cos(2*theta))/((1-cos(2*theta))^(1/2)*GAMMA(1/2-(1/2)*m-(1/2)*l))+_C2*Pi^(1/2)*GAMMA(1-(1/2)*m+(1/2)*l)*JacobiP(-(1/2)*m+(1/2)*l, -1/2, m, -cos(2*theta))*(-2*cos(2*theta)+2)^(1/2)*((1/2)*cos(2*theta)-1/2)^((1/2)*m)/((1-cos(2*theta))^(1/2)*GAMMA(-(1/2)*m+(1/2)*l+1/2))

(4)

``

 

Download question_12.19.mw

 

Is there a way to play animations in maplets?

I can send an animation to a plotter, but don't know how to play it.  

Thanks, Rollie

Can anyone help me to transform a system of ODE into a power series solution. The system of ODE is as follows:

diff(f(eta), eta, eta, eta)+(diff(f(eta), eta, eta))*f(eta)+1 - (diff(f(eta), eta))^2=0

f(eta)*(diff(theta(eta), eta))+(1/Pr)*diff(theta(eta), eta, eta)=0

where Pr is the prendtl no.

The contents of the "list of list" are hidden... I want to display them in the worksheet without double cliking them to open them... what shall I do? Thank you.

First 1491 1492 1493 1494 1495 1496 1497 Last Page 1493 of 2434