MaplePrimes Questions

How i need to write 

>teksbiasa:=`Hello! Bob`;

in button Action When Clicked at simple graphical interface instead of

Do(teksbiasa=%txtTeksBiasa);

because when i enter Hello! Bob in %txtTeksBiasa, system pop up ERROR

 

Error

Error in Component button with caption "Botton":

(in unknown) incorrect syntax in parse: missing operator or

`;`(near 7th character of parsed string)

 

Thank you~=]]

I'm having trouble evaluating an expression with an infinite sum of bessel functions. The expression is:

or, in mathematical notation:

The program doesn't seem to be able to solve the expression and return a value. I only get the answer

When I try to evaluate a simple infinite sum like 

the answer is a value. Breaking up the expression in components and evaluating each one works in some cases, e.g. the expression 

which returns a value. However, the expression

fails, and returns

Is there a trick to evaluating infinite sums with indices appearing inside a function in the summation expression? Or am I doing something wrong?

For example:

[2,4,9,15,20]

I want the output be 2491520.

Any command can solve the problem? Thank you.

>message:=`67A`;

67A

>P:=convert(message, bytes);

[54, 55, 65]

>with(Bits):

>bitP1:=Split(P1);

[0, 1, 1, 0, 1, 1]

>bitP2:=Split(P2);

[1, 1, 1, 0, 1, 1]

>bitP3:=Split(P3);

[1, 0, 0, 0, 0, 0, 1]

>with(Statistics):

>b1:=Count(bitP1);

6

>b2:=Count(bitP2);

6

>b3:=Count(bitP3);

7

>totalBits=b1+b2+b3;

19

 

Hi, how i need to modify my command so when i write any message with any lenght, i can get the totalBits directly..

Thank you~=]]

Hello..  I want to know if there is anny command to show the matrix of linear system.  I recently entred a 64 equations and i solved it by command solve,  but i want to show the matrix of system..  So plz. Help 

Sorry for boring you my friends. I am haunted by a problem of how to omit the undesired term.

For example, in the following equation, the a(t) , b(t), c(t), u(t), v(t), w(t), psi(t), phi(t), theta(t), varsigma(t), tau(t) and upsilon(t) and their first and second direvative to time t are considered as first order small variables. How could I omit the term greater than second order of small variables?

If we omit the undesired by hand, the omitted equation takes the form of:

R^2*rho*h*(diff(w(t), t, t))*Pi+R^2*rho*h*(diff(c(t), t, t))*Pi = 0;

The original equation is given as: 

-R^2*rho*h*cos(Omega*t)*(diff(tau(t), t, t))*a(t)*Pi+tau(t)*R^2*rho*h*(diff(tau(t), t))^2*a(t)*cos(Omega*t)*Pi-tau(t)*R^2*rho*h*(diff(tau(t), t))^2*b(t)*sin(Omega*t)*Pi+tau(t)*a(t)*Pi*cos(Omega*t)*(diff(varsigma(t), t))^2*R^2*h*rho+tau(t)*R^2*rho*h*a(t)*Omega^2*cos(Omega*t)*Pi-tau(t)*sin(Omega*t)*Pi*(diff(varsigma(t), t))^2*b(t)*R^2*h*rho-tau(t)*R^2*rho*h*b(t)*Omega^2*sin(Omega*t)*Pi+2*tau(t)*R^2*rho*h*(diff(a(t), t))*Omega*sin(Omega*t)*Pi+2*tau(t)*R^2*rho*h*(diff(b(t), t))*Omega*cos(Omega*t)*Pi-varsigma(t)*a(t)*sin(Omega*t)*Pi*(diff(varsigma(t), t))^2*R^2*h*rho-varsigma(t)*a(t)*sin(Omega*t)*Pi*Omega^2*R^2*h*rho-varsigma(t)*Pi*cos(Omega*t)*(diff(varsigma(t), t))^2*b(t)*R^2*h*rho-varsigma(t)*Pi*cos(Omega*t)*b(t)*Omega^2*R^2*h*rho-2*varsigma(t)*sin(Omega*t)*Pi*(diff(b(t), t))*Omega*R^2*h*rho+2*varsigma(t)*Pi*cos(Omega*t)*(diff(a(t), t))*Omega*R^2*h*rho+2*a(t)*Pi*cos(Omega*t)*(diff(varsigma(t), t))*Omega*R^2*h*rho-2*sin(Omega*t)*Pi*(diff(varsigma(t), t))*b(t)*Omega*R^2*h*rho+R^2*rho*h*(diff(tau(t), t, t))*sin(Omega*t)*b(t)*Pi+R^2*rho*h*(diff(w(t), t, t))*Pi+R^2*rho*h*(diff(c(t), t, t))*Pi-R^2*rho*h*(diff(tau(t), t))^2*c(t)*Pi+2*varsigma(t)*(diff(tau(t), t))*a(t)*Pi*cos(Omega*t)*(diff(varsigma(t), t))*R^2*h*rho-2*varsigma(t)*(diff(tau(t), t))*sin(Omega*t)*Pi*(diff(varsigma(t), t))*b(t)*R^2*h*rho+a(t)*sin(Omega*t)*Pi*(diff(varsigma(t), t, t))*R^2*h*rho+Pi*cos(Omega*t)*b(t)*(diff(varsigma(t), t, t))*R^2*h*rho-varsigma(t)*Pi*c(t)*(diff(varsigma(t), t, t))*R^2*h*rho-2*tau(t)*R^2*rho*h*(diff(tau(t), t))*(diff(c(t), t))*Pi-2*varsigma(t)*Pi*(diff(varsigma(t), t))*(diff(c(t), t))*R^2*h*rho+2*sin(Omega*t)*Pi*(diff(varsigma(t), t))*(diff(a(t), t))*R^2*h*rho+2*Pi*cos(Omega*t)*(diff(varsigma(t), t))*(diff(b(t), t))*R^2*h*rho-Pi*(diff(varsigma(t), t))^2*c(t)*R^2*h*rho-2*R^2*rho*h*cos(Omega*t)*(diff(tau(t), t))*(diff(a(t), t))*Pi+2*R^2*rho*h*(diff(tau(t), t))*sin(Omega*t)*(diff(b(t), t))*Pi+tau(t)*R^2*rho*h*(diff(b(t), t, t))*sin(Omega*t)*Pi-tau(t)*R^2*rho*h*(diff(a(t), t, t))*cos(Omega*t)*Pi-tau(t)*R^2*rho*h*(diff(tau(t), t, t))*c(t)*Pi+2*R^2*rho*h*Omega*sin(Omega*t)*(diff(tau(t), t))*a(t)*Pi+2*R^2*rho*h*(diff(tau(t), t))*Omega*cos(Omega*t)*b(t)*Pi+varsigma(t)*sin(Omega*t)*Pi*(diff(a(t), t, t))*R^2*h*rho+varsigma(t)*Pi*cos(Omega*t)*(diff(b(t), t, t))*R^2*h*rho = 0;

 

Thank you in advance for taking a look ;)

Suppose that I have a plot:

plot(sin((1/180)*Pi*x), x = -180 .. 180)

I want to add a degree symbol after the tickmarks on the x-axis.  One approach which seem promising is to add a plot option for the x-axis:

axis[1] = [tickmarks = [90 = typeset("90", degree)]]

where "degree" is replaced by a code for the degree symbol. Maple is helpful here because I can point and click using the Common Symbols palette and insert a degree symbol. However this does not work delivering an error "Error, invalid neutral operator". This error is undocumented. 

I can insert a Pi or an infinity symbol. If I want to I can put a degree sysmbol into ther title, but apparently not on the axes.

 

I've got the following:

Integral_over_region.mw

M_Iwaniuk

 

I should be able to use F3 to break into a multline nested loop and insert a new line of code, and then F4 to close it up again before execution.  The F4 works for closing things up.  But the F3 does NOT work.  Is this a known problem?  Is there another way to do it short of a lot of cutting and pasting?

I created a regular 2D without specifying the number of points. I tried to change its style from "line" to "point", but i cannot see the symbols because there are too many points and so all i see is a thick black line. Is replotting with less points the only way, or can I interactively reduce the number of points? 

 

I just bought 2016 Maple. For a few days, everything was fine.

The increase of the speed calculations is very significant.

Then copy and paste gave unexpected results: impossible to keep the symbols, systematic conversion in text,in mode MathML,, appearance of ASCII characters in the texts, etc ..


all attempts to change the settings have failed


I spend more time correcting the changes that occur in the copy and paste that to take care of my equations.

Do you have an explanation ?

Hello everyone!

Is this a bug that the following two commands work differently?:

densityplot(sin(x*y), x = -5 .. 5, y = -5 .. 5, colorscheme = ["zgradient", ["blue", "green", "yellow", "red"], zrange = -5 .. 5], style = surface)

plot3d(sin(x*y), x = -5 .. 5, y = -5 .. 5, view = -10 .. 10, colorscheme = ["zgradient", ["blue", "green", "yellow", "red"], zrange = -5 .. 5], style = surface)

The second one works fine in that if you increase the magnitude of sin(x*y) (e.g. 3sin(x*y)) the coloring changes accordingly. But the first one plots sin(x*y) or 5sin(x*y), etc. just the same!

Many thanks for you comments in advance!

For the last 24hrs or so I have found it almost impossible to upload worksheet files in response to questions.

My usual approach is

Big green up-arrow:
(uploader pop-up appears)

Browse files

(this still works)

Upload file

This is the problem step - I generally just get "waiting for Mapleprimes" in my browser's annunciator box: and I wait, and wait, (as in >5 minutes) and still this step does not complete. Just to be annoying, every once in a while the file will upload as normal, such but success is now the exception

I'm seeing the same issue in Firefox 45.0.2 and Chrome 50.0.2661.75mon Win 7, 64-bit.

Anyone else seeing the same issue?

 

 

Dear Maple researchers

 

I have a problem in solving a system of odes that resulted from discretizing, in space variable, method of lines (MOL).

The basic idea of this code is constructed from the following paper:

http://www.sciencedirect.com/science/article/pii/S0096300313008060

If kindly is possible, please tell me whas the solution of this problem.

With kin dregards,

Emran Tohidi.

My codes is here:

> restart;
> with(orthopoly);
print(`output redirected...`); # input placeholder
> N := 4; Digits := 20;
print(`output redirected...`); # input placeholder

> A := -1; B := 1; rho := 3/4;
> g1 := proc (t) options operator, arrow; 1/2+(1/2)*tanh((1/2)*(A-(2*rho-1)*t/sqrt(2))/sqrt(2)) end proc; g2 := proc (t) options operator, arrow; 1/2+(1/2)*tanh((1/2)*(B-(2*rho-1)*t/sqrt(2))/sqrt(2)) end proc;
print(`output redirected...`); # input placeholder
> f := proc (x) options operator, arrow; 1/2+(1/2)*tanh((1/2)*x/sqrt(2)) end proc;
print(`output redirected...`); # input placeholder
> uexact := proc (x, t) options operator, arrow; 1/2+(1/2)*tanh((1/2)*(x-(2*rho-1)*t/sqrt(2))/sqrt(2)) end proc;
print(`output redirected...`); # input placeholder
> basiceq := simplify(diff(uexact(x, t), `$`(t, 1))-(diff(uexact(x, t), `$`(x, 2)))+uexact(x, t)*(1-uexact(x, t))*(rho-uexact(x, t)));
print(`output redirected...`); # input placeholder
                                      0
> alpha := 0; beta := 0; pol := P(N-1, alpha+1, beta+1, x); pol := unapply(pol, x); dpol := simplify(diff(pol(x), x)); dpol := unapply(dpol, x);
print(`output redirected...`); # input placeholder
> nodes := fsolve(P(N-1, alpha+1, beta+1, x));
%;
> xx[0] := -1;
> for i to N-1 do xx[i] := nodes[i] end do;
print(`output redirected...`); # input placeholder
> xx[N] := 1;
> for k from 0 to N do h[k] := 2^(alpha+beta+1)*GAMMA(k+alpha+1)*GAMMA(k+beta+1)/((2*k+alpha+beta+1)*GAMMA(k+1)*GAMMA(k+alpha+beta+1)) end do;
print(`output redirected...`); # input placeholder
> w[0] := 2^(alpha+beta+1)*(beta+1)*GAMMA(beta+1)^2*GAMMA(N)*GAMMA(N+alpha+1)/(GAMMA(N+beta+1)*GAMMA(N+alpha+beta+2));
print(`output redirected...`); # input placeholder
> for jj to N-1 do w[jj] := 2^(alpha+beta+3)*GAMMA(N+alpha+1)*GAMMA(N+beta+1)/((1-xx[jj]^2)^2*dpol(xx[jj])^2*factorial(N-1)*GAMMA(N+alpha+beta+2)) end do;
print(`output redirected...`); # input placeholder
> w[N] := 2^(alpha+beta+1)*(alpha+1)*GAMMA(alpha+1)^2*GAMMA(N)*GAMMA(N+beta+1)/(GAMMA(N+alpha+1)*GAMMA(N+alpha+beta+2));
print(`output redirected...`); # input placeholder
> for j from 0 to N do dpoly1[j] := simplify(diff(P(j, alpha, beta, x), `$`(x, 1))); dpoly1[j] := unapply(dpoly1[j], x); dpoly2[j] := simplify(diff(P(j, alpha, beta, x), `$`(x, 2))); dpoly2[j] := unapply(dpoly2[j], x) end do;
print(`output redirected...`); # input placeholder
print(??); # input placeholder
> for n to N-1 do for i from 0 to N do BB[n, i] := sum(P(jjj, alpha, beta, xx[jjj])*dpoly2[jjj](xx[n])*w[i]/h[jjj], jjj = 0 .. N) end do end do;
> for n to N-1 do d[n] := BB[n, 0]*g1(t)+BB[n, N]*g2(t); d[n] := unapply(d[n], t) end do;
print(`output redirected...`); # input placeholder
> for nn to N-1 do F[nn] := simplify(sum(BB[nn, ii]*u[ii](t), ii = 1 .. N-1)+u[nn](t)*(1-u[nn](t))*(rho-u[nn](t))+d[nn](t)); F[nn] := unapply(F[nn], t) end do;
print(`output redirected...`); # input placeholder
> sys1 := [seq(d*u[q](t)/dt = F[q](t), q = 1 .. N-1)];
print(`output redirected...`); # input placeholder
[d u[1](t)                                                                
[--------- = 40.708333333333333334 u[1](t) + 52.190476190476190476 u[2](t)
[   dt                                                                    

                                                                  2          3
   + 39.958333333333333334 u[3](t) - 1.7500000000000000000 u[1](t)  + u[1](t)

   + 7.3392857142857142858

   - 3.6696428571428571429 tanh(0.35355339059327376220

   + 0.12500000000000000000 t) - 3.6696428571428571429 tanh(
                                                     d u[2](t)   
-0.35355339059327376220 + 0.12500000000000000000 t), --------- =
                                                        dt       
-20.416666666666666667 u[1](t) - 25.916666666666666667 u[2](t)

                                                                  2          3
   - 20.416666666666666667 u[3](t) - 1.7500000000000000000 u[2](t)  + u[2](t)

   - 3.7500000000000000000

   + 1.8750000000000000000 tanh(0.35355339059327376220

   + 0.12500000000000000000 t) + 1.8750000000000000000 tanh(
                                                     d u[3](t)                
-0.35355339059327376220 + 0.12500000000000000000 t), --------- = 29.458333333\
                                                        dt                    

  333333333 u[1](t) + 38.476190476190476190 u[2](t)

                                                                  2          3
   + 30.208333333333333333 u[3](t) - 1.7500000000000000000 u[3](t)  + u[3](t)

   + 5.4107142857142857144

   - 2.7053571428571428572 tanh(0.35355339059327376220

   + 0.12500000000000000000 t) - 2.7053571428571428572 tanh(
                                                   ]
-0.35355339059327376220 + 0.12500000000000000000 t)]
                                                   ]
> ics := seq(u[qq](0) = evalf(f(xx[qq])), qq = 1 .. N-1);
print(`output redirected...`); # input placeholder
    u[1](0) = 0.38629570659055483825, u[2](0) = 0.50000000000000000000,

      u[3](0) = 0.61370429340944516175
> dsolve([sys1, ics], numeic);
%;
Error, (in dsolve) invalid input: `PDEtools/sdsolve` expects its 1st argument, SYS, to be of type {set({`<>`, `=`, algebraic}), list({`<>`, `=`, algebraic})}, but received [[d*u[1](t)/dt = (20354166666666666667/500000000000000000)*u[1](t)+(13047619047619047619/250000000000000000)*u[2](t)+(19979166666666666667/500000000000000000)*u[3](t)-(7/4)*u[1](t)^2+u[1](t)^3+36696428571428571429/5000000000000000000-(36696428571428571429/10000000000000000000)*tanh(1767766952966368811/5000000000000000000+(1/8)*t)-(36696428571428571429/10000000000000000000)*tanh(-1767766952966368811/5000000000000000000+(1/8)*t), d*u[2](t)/dt = -(20416666666666666667/1000000...

I am currently working on FDM ,i have 2 coupled nonlinear pde ,i need help in solving these equation using maple code.

> restart:

> alias(f=f(tau,eta), theta=theta(tau,eta));

 

>

 

> PDE1:=S*diff(f,tau,eta)=eta^2*diff(f,eta)^2+(6*eta^2-2*f*eta)*diff(f,eta)+(6*eta^3-f*eta)*diff(f,eta,eta)-eta^4*diff(f,eta,eta,eta);

 

> PDE2:=eta^4*diff(theta,eta,eta)+2*eta^3*diff(theta,eta)-Pr*(f*eta^2*diff(theta,eta)+S*diff(theta,tau))=0;

 

First 1139 1140 1141 1142 1143 1144 1145 Last Page 1141 of 2434