MaplePrimes Questions

according to this page  http://www.maplesoft.com/products/maple/new_features/codeeditor.aspx

it says "Maple 17 features a completely new editor for writing Maple code."  but for the last 15 minutes I've been looking in my Maple 17.02 for windows and not able to figure where this editor is or how to start it.

When I open Maple, I say File->New-> and nothing there for an editor.

I also looked in my Maple installation icons group, there is nothing there.

I also looked here http://www.maplesoft.com/support/help/Maple/view.aspx?path=updates/Maple17/CodeEditor

"Maple 17 features a completely new editor for writing Maple code.   The editor includes many features to make it easier to write, read, and debug Maple code, such as syntax highlighting, bracket matching, command completion, and automatic indenting. The new editor is available for managing startup code, inline code edit regions, and code attached to embedded components."

but again, does not say anything about how to START it ? Or is this editor a separate apps I need to buy?

 

Hello,

I study the model of crankshaft in MapleSim.

For the moment, i manage to plot different parameters function of the time. For exemple, the angle of the crank function of the time or the displacement of the slider function of the time.

But, i like to plot the displacement of the slider funtion of the angle of the crank.

Is it possible and how can i do this?

Thank you for your help.

x11 = [0.208408965651696e-3, -0.157194487523421e-2, -0.294739401402979e-2, 0.788206708183853e-2, 0.499394753201753e-2, 0.191468321959759e-3, 0.504980449104750e-2, 0.222150494088535e-2, 0.132091821964287e-2, 0.161118434883258e-2, -0.281236534046873e-2, -0.398055875132037e-2, -0.111753680372819e-1, 0.588868146012489e-2, -0.354191562612469e-2, 0.984082837373291e-3, -0.116041186868374e-1, 0.603027845850267e-3, -0.448778128168742e-2, -0.127561485214862e-1, -0.412027655195339e-2, 0.379387381798949e-2, -0.602550446997765e-2, -0.605986284736216e-2, -0.751396992404410e-2, 0.633613424008655e-2, -0.677581832613623e-2];
y11 = [ -21321.9719565717, 231.709204951251, 1527.92905167191, -32.8508507060675, 54.9408176234139, -99.4222178124229, -675.771433486265, 42.0838668074923, -12559.3183308951, 5.21412214166344*10^5, 1110.50031772203, 3.67149699000155, -108.543878970269, -8.48861069398811, -521.810552387313, 26.4792411876883, -8.32240296737599, -1085.40982521906, -44.1390030597906, -203.891397612798, -56.3746416571417, -218.205643256096, -178.991498697065, -42.2468018350386, .328546922634921, -1883.18308996621, 111.747881085748];
z11 = [ 1549.88755331800, -329.861725802688, 8.54200301129155, -283.381775745327, -54.5469129127573, 1875.94875597129, -16.2230517860850, 6084.82381954832, 1146.15489803104, -456.460512914647, 104.533252701641, 16.3998365630734, 11.5710907832054, -175.370276462696, 33.8045539958636, 2029.50029336951, 1387.92643570857, 9.54717543291120, -1999.09590358328, 29.7628085078953, 2.58210333216737*10^6, 57.7969622731082, -6.42551196941394, -8549.23677077892, -49.0081775323244, -72.5156360537114, 183.539911458475];
filename = 'C:\Users\Hello\Desktop\testnew51.gif';
k = 10;
for n=1:length(x11)
plot3(x11(1:n),y11(1:n), z11(1:n));
%axis equal;
%axis([0,max(x11),0,max(y11)+10]);
xlabel('x (ft)');
ylabel('y11 (ft)');
title('Projectile Trajectory');
M(n)=getframe;
im = frame2im(M(n));
[imind,cm] = rgb2ind(im,256);
if n == 1;
imwrite(imind,cm,filename,'gif', 'Loopcount',inf);
else
imwrite(imind,cm,filename,'gif','WriteMode','append');
end;
end;
numtimes=3;
fps=1;
movie(M,numtimes,fps);

 

when i magnify the diagram in matlab, it is not a triangle, the diagram is changed, 

would like to draw this and animate this in maple to see whether maple has this problem

 

x11 := Vector([0.208408965651696e-3, -0.157194487523421e-2, -0.294739401402979e-2, 0.788206708183853e-2, 0.499394753201753e-2, 0.191468321959759e-3, 0.504980449104750e-2, 0.222150494088535e-2, 0.132091821964287e-2, 0.161118434883258e-2, -0.281236534046873e-2, -0.398055875132037e-2, -0.111753680372819e-1, 0.588868146012489e-2, -0.354191562612469e-2, 0.984082837373291e-3, -0.116041186868374e-1, 0.603027845850267e-3, -0.448778128168742e-2, -0.127561485214862e-1, -0.412027655195339e-2, 0.379387381798949e-2, -0.602550446997765e-2, -0.605986284736216e-2, -0.751396992404410e-2, 0.633613424008655e-2, -0.677581832613623e-2]):
y11 := Vector([ -21321.9719565717, 231.709204951251, 1527.92905167191, -32.8508507060675, 54.9408176234139, -99.4222178124229, -675.771433486265, 42.0838668074923, -12559.3183308951, 5.21412214166344*10^5, 1110.50031772203, 3.67149699000155, -108.543878970269, -8.48861069398811, -521.810552387313, 26.4792411876883, -8.32240296737599, -1085.40982521906, -44.1390030597906, -203.891397612798, -56.3746416571417, -218.205643256096, -178.991498697065, -42.2468018350386, .328546922634921, -1883.18308996621, 111.747881085748]):
z11 := Vector([ 1549.88755331800, -329.861725802688, 8.54200301129155, -283.381775745327, -54.5469129127573, 1875.94875597129, -16.2230517860850, 6084.82381954832, 1146.15489803104, -456.460512914647, 104.533252701641, 16.3998365630734, 11.5710907832054, -175.370276462696, 33.8045539958636, 2029.50029336951, 1387.92643570857, 9.54717543291120, -1999.09590358328, 29.7628085078953, 2.58210333216737*10^6, 57.7969622731082, -6.42551196941394, -8549.23677077892, -49.0081775323244, -72.5156360537114, 183.539911458475]):

 

 

a1 := Diff(x1(t),t) = k1*x1(t)+ k2*y1(t)+ k3*z1(t) + k4*u(t);

b1 := Diff(y1(t),t) = k5*x1(t)+ k6*y1(t)+ k7*z1(t) + k8*u(t);

c1 := Diff(z1(t),t) = k9*x1(t)+ k10*y1(t)+ k11*z1(t) + k12*u(t);
d1 := Diff(u(t), t) = 0;
ICS:=x1(0)=x11[1],y1(0)=y11[1],z1(0)=z11[1];
sol:=dsolve({a1,b1,c1,d1,ICS}, numeric, method=rkf45, parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12]);
ans:=proc(p1,p2,p3) sol(parameters=[a1=p1,b1=p2,c1=p3]); end proc:
FitParams:=Statistics:-NonlinearFit(ans, x11, y11, z11, x1, y1, z1, initialvalues=<150e-9>, output=parametervalues);

Error, (in Statistics:-NonlinearFit) initial values Vector has incorrect dimension

a1 := Diff(x1(t),t) = k1*x1(t)+ k2*y1(t)+ k3*z1(t) + k4*u(t);
b1 := Diff(y1(t),t) = k5*x1(t)+ k6*y1(t)+ k7*z1(t) + k8*u(t);
c1 := Diff(z1(t),t) = k9*x1(t)+ k10*y1(t)+ k11*z1(t) + k12*u(t);
ICS:=x1(0)=x11[1],y1(0)=y11[1],z1(0)=z11[1];
sol:=dsolve({a1,b1,c1,ICS}, numeric, method=rkf45, parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12]);

Error, (in DEtools/convertsys) the ODE system does not contain derivatives of the unknown function u

ans:=proc(p1,p2,p3) sol(parameters=[a1=p1,b1=p2,c1=p3]); end proc:
FitParams:=Statistics:-NonlinearFit(ans, x11, y11, z11, x1, y1, z1, initialvalues=<150e-9>, output=parametervalues);

so would anybody know how to write a function that checks whether two line segments intersect?  each line segment is given a list [[a,b],[x,y]] , of 2 lists with 2 numbers in each.   

it should return  "True" if ∃s,t  [0,t] : sa+(1-s)b =tx+(1-t)y ,  else"False"

 I haven't a clue so any help would be appreciated,

thanks in advance.

I can't seem to find what's wrong with this function:

F:= x-> (-c-ax)/b;
G:=x-> (-d-ex)/f;
If -a/b = -e/f then print (false) else print (true); end if;

Hey all new to Maplesoft my question is this;

i have 3 equations which contains both numeric and symbols, how can i seprrate these to ?
for example :

> restart:
> eq1:=a[1]^3+a[2]+a[3]^2+50;

> eq2:=a[1]^2+5*a[2]+a[3]+44;

> eq3:=a[1]+a[2]+a[3]^2+74;

i want maple to seprate these three equations in two vectors,first vector including symbols and second one includes numerics , like this :
V1:=<<a[1]^3+a[2]+a[3]^2>,<a[1]^2+5*a[2]+a[3]>,<a[1]+a[2]+a[3]^2>>;

V2:=<<50>,<44>,<74>>;

eq:=<<eq1>,<eq2>,<eq3>>;

so that 

is(V1+V2=eq);

gives me the answer true.
tnx for help.

Hello,

For a control systems project I'am working on I need to minimize the actuator effort required to control an input voltage to certain output voltage. As a first experiment I chose a sinusoidal input ug and a sinusoidal output ul. The function to minimize is the funtion Uint. We know that when both the input voltage and output voltage share the frequency, phase and amplitude, that the control effort is zero. Running the animation (see Maple input below) shows that if the input and output voltage frequencies approach eachother the function Uint goes to zero. However, if the frequencies exactly match and I evaluate the function Uint I get a devision by zero notification (this could already be seen from the function of Uint). How can I solve this?

restart

with(plots):

u[G] := sin(omega[G]*t)

u[L] := sin(omega[L]*t)

U[int] := int((u[G]-u[L])^2, t)

omega[G] := 9:

animate(plot, [[u[G], u[L], (1/10)*U[int]], t = 0 .. 5, legend = ["Public grid voltage", "Local grid voltage (control goal)", "Cum. Actuator voltage (scaled)"]], omega[L] = 8 .. 10, gridlines = true, labels = ["Time [s]","Voltage [V]"], labeldirections = ["horizontal", "vertical"], labelfont = ["ARIAL", "bold", 12])

omega[L] := 9; t := 10; evalf(U[int])

NULL

 

Download 20131109_Division_by.mw

 

Thanks

I have just started using Maple 17 for general relativity, and I have managed to set up coordinates and enter a somewhat complicated spacetime metric, and to find the Killing vectors for the metric.

I can't seem to do something much more basic, though, initialize the components of a vector field as functions of the coordinates.

For example, how would I set up a 4-vector field A such that the contravariant component A^3 = cosh(x2), where x2 is one of my coordinates?

Thanks.

restart;
with(plots):
with(Optimization):
with(LinearAlgebra):
with(Statistics):
with(DEtools):
x11 := <0.208408965651696e-3, -0.157194487523421e-2, -0.294739401402979e-2, 0.788206708183853e-2, 0.499394753201753e-2, 0.191468321959759e-3, 0.504980449104750e-2, 0.222150494088535e-2, 0.132091821964287e-2, 0.161118434883258e-2, -0.281236534046873e-2, -0.398055875132037e-2, -0.111753680372819e-1, 0.588868146012489e-2, -0.354191562612469e-2, 0.984082837373291e-3, -0.116041186868374e-1, 0.603027845850267e-3, -0.448778128168742e-2, -0.127561485214862e-1, -0.412027655195339e-2, 0.379387381798949e-2, -0.602550446997765e-2, -0.605986284736216e-2, -0.751396992404410e-2, 0.633613424008655e-2, -0.677581832613623e-2>;
y11 := <-21321.9719565717, 231.709204951251, 1527.92905167191, -32.8508507060675, 54.9408176234139, -99.4222178124229, -675.771433486265, 42.0838668074923, -12559.3183308951, 5.21412214166344*10^5, 1110.50031772203, 3.67149699000155, -108.543878970269, -8.48861069398811, -521.810552387313, 26.4792411876883, -8.32240296737599, -1085.40982521906, -44.1390030597906, -203.891397612798, -56.3746416571417, -218.205643256096, -178.991498697065, -42.2468018350386, .328546922634921, -1883.18308996621, 111.747881085748>;
z11 := <1549.88755331800, -329.861725802688, 8.54200301129155, -283.381775745327, -54.5469129127573, 1875.94875597129, -16.2230517860850, 6084.82381954832, 1146.15489803104, -456.460512914647, 104.533252701641, 16.3998365630734, 11.5710907832054, -175.370276462696, 33.8045539958636, 2029.50029336951, 1387.92643570857, 9.54717543291120, -1999.09590358328, 29.7628085078953, 2.58210333216737*10^6, 57.7969622731082, -6.42551196941394, -8549.23677077892, -49.0081775323244, -72.5156360537114, 183.539911458475>;
ICS:=[x1(0)=x11[1],y1(0)=y11[1],z1(0)=z11[1]];
N := Dimension(x11)-1:
sys1 := [Diff(x1(t),t) = k1*x1(t)+ k2*y1(t)+ k3*z1(t), Diff(y1(t),t) = k5*x1(t)+ k6*y1(t)+ k7*z1(t), Diff(z1(t),t) = k9*x1(t)+ k10*y1(t)+ k11*z1(t)];
SS := proc(k1,k2,k3,k5,k6,k7,k9,k10,k11)
local F, V;
if not type([k1,k2,k3,k5,k6,k7,k9,k10,k11],[numeric,numeric,numeric,numeric,numeric,numeric,numeric,numeric,numeric]) then return 'SS'(k1,k2,k3,k5,k6,k7,k9,k10,k11);
elif k1<0 or k2<0 or k3<0 or k5<0 or k6<0 or k7<0 or k9<0 or k10<0 or k11<0 then return 1e100;
end if;
F := dsolve(eval({Diff(x1(t),t) = k1*x1(t)+ k2*y1(t)+ k3*z1(t), Diff(y1(t),t) = k5*x1(t)+ k6*y1(t)+ k7*z1(t), Diff(z1(t),t) = k9*x1(t)+ k10*y1(t)+ k11*z1(t),x1(0)=x11[1],y1(0)=y11[1],z1(0)=z11[1]},{:-k1=k1,:-k2=k2,:-k3=k3,:-k5=k5,:-k6=k6,:-k7=k7,:-k9=k9,:-k10=k10,:-k11=k11}), [x1(t),y1(t),z1(t)], numeric, output=Array([seq(k,k=0..N)]));
V := convert(Column(F[2,1],2),Vector);
Norm(V-x11,2);
Norm(V-y11,2);
Norm(V-z11,2);
end proc:
params := NLPSolve(SS(k1,k2,k3,k5,k6,k7,k9,k10,k11), method=nonlinearsimplex, initialpoint=[k1=.1, k2=.1, k3=.1, k5=.1, k6=.1, k7=.1, k9=.1, k10=.1, k11=.1],evaluationlimit=200):

Warning, limiting number of function evaluations reached

reference from 

http://www.maplesoft.com/applications/view.aspx?SID=1667

when debug

k1=.1; k2=.1; k3=.1; k5=.1; k6=.1; k7=.1; k9=.1; k10=.1; k11=.1;
F := dsolve({Diff(x1(t),t) = k1*x1(t)+ k2*y1(t)+ k3*z1(t), Diff(y1(t),t) = k5*x1(t)+ k6*y1(t)+ k7*z1(t), Diff(z1(t),t) = k9*x1(t)+ k10*y1(t)+ k11*z1(t),x1(0)=x11[1],y1(0)=y11[1],z1(0)=z11[1]}, [x1(t),y1(t),z1(t)], numeric, output=Array([seq(k,k=0..N)]));

 

Warning, The use of global variables in numerical ODE problems is deprecated, and will be removed in a future release. Use the 'parameters' argument instead (see ?dsolve,numeric,parameters)
Error, (in dsolve/numeric) Array/array solutions cannot be obtained for ODE containing unassigned global variables {k1, k10, k11, k2, k3, k5, k6, k7, k9}

x11 := Vector([0.208408965651696e-3, -0.157194487523421e-2, -0.294739401402979e-2, 0.788206708183853e-2, 0.499394753201753e-2, 0.191468321959759e-3, 0.504980449104750e-2, 0.222150494088535e-2, 0.132091821964287e-2, 0.161118434883258e-2, -0.281236534046873e-2, -0.398055875132037e-2, -0.111753680372819e-1, 0.588868146012489e-2, -0.354191562612469e-2, 0.984082837373291e-3, -0.116041186868374e-1, 0.603027845850267e-3, -0.448778128168742e-2, -0.127561485214862e-1, -0.412027655195339e-2, 0.379387381798949e-2, -0.602550446997765e-2, -0.605986284736216e-2, -0.751396992404410e-2, 0.633613424008655e-2, -0.677581832613623e-2]):

y11 := Vector([ -21321.9719565717, 231.709204951251, 1527.92905167191, -32.8508507060675, 54.9408176234139, -99.4222178124229, -675.771433486265, 42.0838668074923, -12559.3183308951, 5.21412214166344*10^5, 1110.50031772203, 3.67149699000155, -108.543878970269, -8.48861069398811, -521.810552387313, 26.4792411876883, -8.32240296737599, -1085.40982521906, -44.1390030597906, -203.891397612798, -56.3746416571417, -218.205643256096, -178.991498697065, -42.2468018350386, .328546922634921, -1883.18308996621, 111.747881085748]):

z11 := Vector([ 1549.88755331800, -329.861725802688, 8.54200301129155, -283.381775745327, -54.5469129127573, 1875.94875597129, -16.2230517860850, 6084.82381954832, 1146.15489803104, -456.460512914647, 104.533252701641, 16.3998365630734, 11.5710907832054, -175.370276462696, 33.8045539958636, 2029.50029336951, 1387.92643570857, 9.54717543291120, -1999.09590358328, 29.7628085078953, 2.58210333216737*10^6, 57.7969622731082, -6.42551196941394, -8549.23677077892, -49.0081775323244, -72.5156360537114, 183.539911458475]):

 

a1 := Diff(x1(t),t) = k1*x1(t)+ k2*y1(t)+ k3*z1(t) + k4*u(t);

b1 := Diff(y1(t),t) = k5*x1(t)+ k6*y1(t)+ k7*z1(t) + k8*u(t);

c1 := Diff(z1(t),t) = k9*x1(t)+ k10*y1(t)+ k11*z1(t) + k12*u(t);

ICS:=x1(0)=x11[1],y1(0)=y11[1],z1(0)=z11[1];

SOLN := dsolve( { a1,b1,c1, ICS }, {x1(t),y1(t),z1(t)} );

EQ1790 := subs(t= 0, SOLN );

EQ1800 := subs(t=10, SOLN );

PARAMETERS := solve( { EQ1790, EQ1800 }, { k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12 } );

x11 := Vector([0.208408965651696e-3, -0.157194487523421e-2, -0.294739401402979e-2, 0.788206708183853e-2, 0.499394753201753e-2, 0.191468321959759e-3, 0.504980449104750e-2, 0.222150494088535e-2, 0.132091821964287e-2, 0.161118434883258e-2, -0.281236534046873e-2, -0.398055875132037e-2, -0.111753680372819e-1, 0.588868146012489e-2, -0.354191562612469e-2, 0.984082837373291e-3, -0.116041186868374e-1, 0.603027845850267e-3, -0.448778128168742e-2, -0.127561485214862e-1, -0.412027655195339e-2, 0.379387381798949e-2, -0.602550446997765e-2, -0.605986284736216e-2, -0.751396992404410e-2, 0.633613424008655e-2, -0.677581832613623e-2]):
y11 := Vector([ -21321.9719565717, 231.709204951251, 1527.92905167191, -32.8508507060675, 54.9408176234139, -99.4222178124229, -675.771433486265, 42.0838668074923, -12559.3183308951, 5.21412214166344*10^5, 1110.50031772203, 3.67149699000155, -108.543878970269, -8.48861069398811, -521.810552387313, 26.4792411876883, -8.32240296737599, -1085.40982521906, -44.1390030597906, -203.891397612798, -56.3746416571417, -218.205643256096, -178.991498697065, -42.2468018350386, .328546922634921, -1883.18308996621, 111.747881085748]):
z11 := Vector([ 1549.88755331800, -329.861725802688, 8.54200301129155, -283.381775745327, -54.5469129127573, 1875.94875597129, -16.2230517860850, 6084.82381954832, 1146.15489803104, -456.460512914647, 104.533252701641, 16.3998365630734, 11.5710907832054, -175.370276462696, 33.8045539958636, 2029.50029336951, 1387.92643570857, 9.54717543291120, -1999.09590358328, 29.7628085078953, 2.58210333216737*10^6, 57.7969622731082, -6.42551196941394, -8549.23677077892, -49.0081775323244, -72.5156360537114, 183.539911458475]):

 

a1 := Diff(x1(t),t) = k1*x1(t)+ k2*y1(t)+ k3*z1(t) + k4*u(t);
b1 := Diff(y1(t),t) = k5*x1(t)+ k6*y1(t)+ k7*z1(t) + k8*u(t);
c1 := Diff(z1(t),t) = k9*x1(t)+ k10*y1(t)+ k11*z1(t) + k12*u(t);
d1 := Diff(u(t), t) = 0;
ICS:=x1(0)=x11[1],y1(0)=y11[1],z1(0)=z11[1];
solL:=dsolve({a1,b1,c1,d1,ICS}, numeric, method=rkf45, parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12]);
ans:=proc(p1,p2,p3) solL(parameters=[a1=p1,b1=p2,c1=p3]); end proc:
FitParams:=Statistics:-NonlinearFit(ans, x11, y11, z11, x1, y1, z1);

 

Error, (in Statistics:-NonlinearFit) unexpected parameters: Vector(27, {(1) = 1549.88755331800, (2) = -329.861725802688, (3) = 8.54200301129155, (4) = -283.381775745327, (5) = -54.5469129127573, (6) = 1875.94875597129, (7) = -16.2230517860850, (8) = 6084.82381954832, (9) = 1146.15489803104, (10) = -456.460512914647, (11) = 104.533252701641, (12) = 16.3998365630734, (13) = 11.5710907832054, (14) = -175.370276462696, (15) = 33.8045539958636, (16) = 2029.50029336951, (17) = 1387.92643570857, (18) = 9.54717543291120, (19) = -1999.09590358328, (20) = 29.7628085078953, (21) = 2582103.332, (22) = 57.7969622731082, (23) = -6.42551196941394, (24) = -...

So I am working on doing some trajectory simulations in Maple using standard Newton's Laws, some force expressions, and initial conditions.

Anyway, the numerical solution works fine if I let the initial conditions I specified (for z=-1) be actually for z=-0.9. To illustrate, when I give an initial condition like this:

x(-1) = x_0, D(x)(-1) = xd_0, Vz(-1) = v_0

the results don't make any sense. However, when using the same x_0, xd_0, and v_0 and I give initial conditions like this:

x(-.9) = x_0, D(x)(-.9) = xd_0, Vz(-0.9) = v_0,

the solutions at least make a bit of sense.

What's weird is that, when I let z -> 0.93 or so, the solution changes discontinuously. And this shouldn't happen. The initial conditions were calculated for and should work for z = -1. I don't understand why they aren't.

Here is my Maple document. ics1 are the problem.

dsolve_field_traject.mw

Do you guys have any idea what could be going on?

One can do igcd(12,8), and igcd(16,3), etc...

But how to define a list/set/array/vector/matrix, etc... that contains these pair of numbers, and then call/map igcd on this list?

I tried putting the pair of values in a list and set and even a matrix, calling calling map(igcd, lst) but not getting it right.

The confusing part for me with Maple is to know which data structure to use for each function, since there are more than one. Here are my silly attempts:

lst:={{12,8},{16,3}};
map(igcd,lst);

lst:=<<12|8>,<16|3>>;
map(igcd,lst);

lst:=[{12,8},{16,3}];
map(igcd,lst);

I was looking for something like in Mathematica:

lst = {{12, 8}, {16, 3}};
GCD @@ lst

    {4, 1}

I am sure it is possible to do this in Maple (i.e. map igcd to list of pair of numbers), I just can't get the syntax right. I did look at few examples somewhat related, but did not understand what they are doing. They said I need to pass an extra argument for map in this case?

thank you

First 1514 1515 1516 1517 1518 1519 1520 Last Page 1516 of 2434