MaplePrimes Questions

Dear Sirs,

I would very much appreciate if you could help me sorting out the attached problem that Maple 2017 is giving a wrong result.

Y s.

My code:

I want to define the Kronecker delta function and compute its integral that is 1, but Maple guives 0 that is a wrong answer.
I would very much appreciate if you could help me sorting out this problem.

My e-mail: a3portela@gmail.com 

Untitled.pdf

Hi,

I want to solve the integral with respect to Gamma function but I can not obtain it by maple. the lower limit "a" is very close to zero. Please direct me. Thank you

Integral.mw


 

 

 

 

Is there geometric or statistical meaning for ln(dy/dx) = 0?

is there any feature in vector field plot when ln(dy/dx) = 0?

Int(exp(LambertW(1/(-1+x))*(-1+x)), x)+1
 
x-Intat(1/exp((-1+_a)*LambertW(1/(-1+_a))), _a = y(x))-_C1 = 0
 
i use dsolve two equations, get two possible results,
how to evaluate these functions or how to use these functions?
mas := proc(f)
return ln(diff(rhs(subs(_C1=0,dsolve(diff(y(x),x) = f))), x$2));
end proc:
mas(exp(x));
mas(mas(exp(x)));
mas(x^2);
mas(x^2+x^3);
 
when i hard code x, there is no problem in above code.
but when i op to get variable x and run below, it do not have problem when run line by line, but it has problem when run in
procedure
Error, (in mas) invalid input: diff received exp(x), which is not valid for its 2nd argument
 
mas := proc(f)
local martin:
martin := op(f):
return ln(diff(rhs(subs(_C1=0,dsolve(diff(y(martin),martin) = f))), martin$2));
end proc:
 
mas(exp(x));
mas(mas(exp(x)));
mas(x^2);
mas(x^2+x^3);

What is the Maple Formula for the Excel function: =WEIBULL.DIST(A1,2,6.2,FALSE)

where A1..A26 is 0..26  ?  How do I plot it?

Thank you, Les

Sorry for the simple subject.  Using unapply we can convert an expression to a function. 

a:=x^2+sin(x)

a:=unapply(a,x)

               a:= x-> x^2+sin(x)

How do you go the other way.  That is convert a function to an expression?

Please I am having problem with this code particularly the last subroutine

#subroutine 1

restart;
Digits:=30:

f:=proc(n)
    -25*y[n]+12*cos(x[n]):
end proc:

#subroutine 2

e1:=y[n+4] = -y[n]+2*y[n+2]+((1/15)*h^2+(2/945)*h^2*u^2+(1/56700)*h^2*u^4-(1/415800)*h^2*u^6-(167/833976000)*h^2*u^8-(2633/245188944000)*h^2*u^10-(2671/5557616064000)*h^2*u^12-(257857/13304932857216000)*h^2*u^14-(3073333/4215002729166028800)*h^2*u^16)*f(n)+((16/15)*h^2-(8/945)*h^2*u^2-(1/14175)*h^2*u^4+(1/103950)*h^2*u^6+(167/208494000)*h^2*u^8+(2633/61297236000)*h^2*u^10+(2671/1389404016000)*h^2*u^12+(257857/3326233214304000)*h^2*u^14+(3073333/1053750682291507200)*h^2*u^16)*f(n+1)+((26/15)*h^2+(4/315)*h^2*u^2+(1/9450)*h^2*u^4-(1/69300)*h^2*u^6-(167/138996000)*h^2*u^8-(2633/40864824000)*h^2*u^10-(2671/926269344000)*h^2*u^12-(257857/2217488809536000)*h^2*u^14-(3073333/702500454861004800)*h^2*u^16)*f(n+2)+((16/15)*h^2-(8/945)*h^2*u^2-(1/14175)*h^2*u^4+(1/103950)*h^2*u^6+(167/208494000)*h^2*u^8+(2633/61297236000)*h^2*u^10+(2671/1389404016000)*h^2*u^12+(257857/3326233214304000)*h^2*u^14+(3073333/1053750682291507200)*h^2*u^16)*f(n+3)+((1/15)*h^2+(2/945)*h^2*u^2+(1/56700)*h^2*u^4-(1/415800)*h^2*u^6-(167/833976000)*h^2*u^8-(2633/245188944000)*h^2*u^10-(2671/5557616064000)*h^2*u^12-(257857/13304932857216000)*h^2*u^14-(3073333/4215002729166028800)*h^2*u^16)*f(n+4):

e2:=y[n+3] = -y[n+1]+2*y[n+2]+(-(1/240)*h^2-(31/60480)*h^2*u^2-(67/1814400)*h^2*u^4-(109/53222400)*h^2*u^6-(18127/186810624000)*h^2*u^8-(64931/15692092416000)*h^2*u^10-(9701/59281238016000)*h^2*u^12-(20832397/3406062811447296000)*h^2*u^14-(11349439/51876956666658816000)*h^2*u^16)*f(n)+((1/10)*h^2+(31/15120)*h^2*u^2+(67/453600)*h^2*u^4+(109/13305600)*h^2*u^6+(18127/46702656000)*h^2*u^8+(64931/3923023104000)*h^2*u^10+(9701/14820309504000)*h^2*u^12+(20832397/851515702861824000)*h^2*u^14+(11349439/12969239166664704000)*h^2*u^16)*f(n+1)+((97/120)*h^2-(31/10080)*h^2*u^2-(67/302400)*h^2*u^4-(109/8870400)*h^2*u^6-(18127/31135104000)*h^2*u^8-(64931/2615348736000)*h^2*u^10-(9701/9880206336000)*h^2*u^12-(20832397/567677135241216000)*h^2*u^14-(11349439/8646159444443136000)*h^2*u^16)*f(n+2)+((1/10)*h^2+(31/15120)*h^2*u^2+(67/453600)*h^2*u^4+(109/13305600)*h^2*u^6+(18127/46702656000)*h^2*u^8+(64931/3923023104000)*h^2*u^10+(9701/14820309504000)*h^2*u^12+(20832397/851515702861824000)*h^2*u^14+(11349439/12969239166664704000)*h^2*u^16)*f(n+3)+(-(1/240)*h^2-(31/60480)*h^2*u^2-(67/1814400)*h^2*u^4-(109/53222400)*h^2*u^6-(18127/186810624000)*h^2*u^8-(64931/15692092416000)*h^2*u^10-(9701/59281238016000)*h^2*u^12-(20832397/3406062811447296000)*h^2*u^14-(11349439/51876956666658816000)*h^2*u^16)*f(n+4):

e3:=h*delta[n] = (-149/42-(16/245)*u^2-(1324/169785)*u^4-(559246/695269575)*u^6-(14310311/175207932900)*u^8-(170868550903/20641246574949000)*u^10)*y[n]+(128/21+(32/245)*u^2+(2648/169785)*u^4+(1118492/695269575)*u^6+(14310311/87603966450)*u^8+(170868550903/10320623287474500)*u^10)*y[n+1]+(-107/42-(16/245)*u^2-(1324/169785)*u^4-(559246/695269575)*u^6-(14310311/175207932900)*u^8-(170868550903/20641246574949000)*u^10)*y[n+2]+(-(67/1260)*h^2+(1241/198450)*h^2*u^2+(277961/366735600)*h^2*u^4+(26460409/333729396000)*h^2*u^6+(1363374533/168199615584000)*h^2*u^8+(16323847966961/19815596711951040000)*h^2*u^10)*f(n)+((188/105)*h^2+(5078/99225)*h^2*u^2+(556159/91683900)*h^2*u^4+(51834031/83432349000)*h^2*u^6+(67782373/1078202664000)*h^2*u^8+(1854079193287/291405833999280000)*h^2*u^10)*f(n+1)+((31/90)*h^2+(341/33075)*h^2*u^2+(79361/61122600)*h^2*u^4+(23456627/166864698000)*h^2*u^6+(1228061399/84099807792000)*h^2*u^8+(14797833720283/9907798355975520000)*h^2*u^10)*f(n+2)+(-(4/105)*h^2-(46/14175)*h^2*u^2-(809/1871100)*h^2*u^4-(27827/567567000)*h^2*u^6-(637171/122594472000)*h^2*u^8-(33500737/62523180720000)*h^2*u^10)*f(n+3)+((1/252)*h^2+(23/28350)*h^2*u^2+(809/7484400)*h^2*u^4+(27827/2270268000)*h^2*u^6+(637171/490377888000)*h^2*u^8+(33500737/250092722880000)*h^2*u^10)*f(n+4):

e4:=y[3] = -y[1]+2*y[2]+(-(1/240)*h^2-(31/60480)*h^2*u^2-(67/1814400)*h^2*u^4-(109/53222400)*h^2*u^6-(18127/186810624000)*h^2*u^8-(64931/15692092416000)*h^2*u^10-(9701/59281238016000)*h^2*u^12-(20832397/3406062811447296000)*h^2*u^14-(11349439/51876956666658816000)*h^2*u^16)*f(0)+((1/10)*h^2+(31/15120)*h^2*u^2+(67/453600)*h^2*u^4+(109/13305600)*h^2*u^6+(18127/46702656000)*h^2*u^8+(64931/3923023104000)*h^2*u^10+(9701/14820309504000)*h^2*u^12+(20832397/851515702861824000)*h^2*u^14+(11349439/12969239166664704000)*h^2*u^16)*f(1)+((97/120)*h^2-(31/10080)*h^2*u^2-(67/302400)*h^2*u^4-(109/8870400)*h^2*u^6-(18127/31135104000)*h^2*u^8-(64931/2615348736000)*h^2*u^10-(9701/9880206336000)*h^2*u^12-(20832397/567677135241216000)*h^2*u^14-(11349439/8646159444443136000)*h^2*u^16)*f(2)+((1/10)*h^2+(31/15120)*h^2*u^2+(67/453600)*h^2*u^4+(109/13305600)*h^2*u^6+(18127/46702656000)*h^2*u^8+(64931/3923023104000)*h^2*u^10+(9701/14820309504000)*h^2*u^12+(20832397/851515702861824000)*h^2*u^14+(11349439/12969239166664704000)*h^2*u^16)*f(3)+(-(1/240)*h^2-(31/60480)*h^2*u^2-(67/1814400)*h^2*u^4-(109/53222400)*h^2*u^6-(18127/186810624000)*h^2*u^8-(64931/15692092416000)*h^2*u^10-(9701/59281238016000)*h^2*u^12-(20832397/3406062811447296000)*h^2*u^14-(11349439/51876956666658816000)*h^2*u^16)*f(4):

e5:=h*delta[0] = (-149/42-(16/245)*u^2-(1324/169785)*u^4-(559246/695269575)*u^6-(14310311/175207932900)*u^8-(170868550903/20641246574949000)*u^10)*y[0]+(128/21+(32/245)*u^2+(2648/169785)*u^4+(1118492/695269575)*u^6+(14310311/87603966450)*u^8+(170868550903/10320623287474500)*u^10)*y[1]+(-107/42-(16/245)*u^2-(1324/169785)*u^4-(559246/695269575)*u^6-(14310311/175207932900)*u^8-(170868550903/20641246574949000)*u^10)*y[2]+(-(67/1260)*h^2+(1241/198450)*h^2*u^2+(277961/366735600)*h^2*u^4+(26460409/333729396000)*h^2*u^6+(1363374533/168199615584000)*h^2*u^8+(16323847966961/19815596711951040000)*h^2*u^10)*f(0)+((188/105)*h^2+(5078/99225)*h^2*u^2+(556159/91683900)*h^2*u^4+(51834031/83432349000)*h^2*u^6+(67782373/1078202664000)*h^2*u^8+(1854079193287/291405833999280000)*h^2*u^10)*f(1)+((31/90)*h^2+(341/33075)*h^2*u^2+(79361/61122600)*h^2*u^4+(23456627/166864698000)*h^2*u^6+(1228061399/84099807792000)*h^2*u^8+(14797833720283/9907798355975520000)*h^2*u^10)*f(2)+(-(4/105)*h^2-(46/14175)*h^2*u^2-(809/1871100)*h^2*u^4-(27827/567567000)*h^2*u^6-(637171/122594472000)*h^2*u^8-(33500737/62523180720000)*h^2*u^10)*f(3)+((1/252)*h^2+(23/28350)*h^2*u^2+(809/7484400)*h^2*u^4+(27827/2270268000)*h^2*u^6+(637171/490377888000)*h^2*u^8+(33500737/250092722880000)*h^2*u^10)*f(4):

 

#subroutine 3

 


inx:=0:
ind:=0:
iny:=1:
h:=Pi/4.0:
n:=0:
omega:=5:
u:=omega*h:
N:=solve(h*p = 500*Pi/2, p):

c:=1:
for j from 0 to 5 do
    t[j]:=inx+j*h:
end do:
#e||(1..6);
vars:=y[n+1],y[n+2],y[n+3],delta[n],y[n+4]:

printf("%6s%15s%15s%15s\n",
    "h","Num.y","Ex.y","Error y");
for k from 1 to N do

    par1:=x[0]=t[0],x[1]=t[1],x[2]=t[2],x[3]=t[3],x[4]=t[4],x[5]=t[5]:
    par2:=y[n]=iny,delta[n]=ind:
   

res:=eval(<vars>, fsolve(eval({e||(1..5)},[par1,par2]), {vars}));

    for i from 1 to 5 do
        exy:=eval(0.5*cos(5*c*h)+0.5*cos(c*h)):
        printf("%6.5f%17.9f%15.9f%13.5g\n",
        h*c,res[i],exy,abs(res[i]-exy)):
        
        c:=c+1:
    end do:
    iny:=res[5]:
    inx:=t[5]:
    for j from 0 to 5 do
        t[j]:=inx + j*h:
    end do:
end do:

 

 

 

 

F(exp(t)) = t

F(F(exp(t))) = 0

what is F ?

is it diff(ln(x),t) ?

 

A system of algebraic equation

in terms of x, y, z

how draw 3 different circles to show the range of possible values for x, y and z respectively?

it may not be a circle 

It may be 3 bounded area graph to show the range of x , y , z respectively

 

updated

like the graph in many examples in

algebraic and geometric ideas in the theory of discrete optimization

bound area have color

I have a question about order reduction of PDES, can we reduce order of a pde equation from 4 to 2?(or any book recommend fot this);any suggestions? 

For example the equation below where A and Q and Ex are constant  

i have an expression, for example

y=0.0000125698-0.0000125698*cos(54x);

how can i factor this expression to show it like this

y=0.0000125698(1-cos(54x));

tnx for help

I'm new to maple and I'm trying to write code in worksheet mode with some source code I have, I don't understand some of the syntax though, like the next:

m,  mass
r,  radius

J=m*r^2; Inertia

 

m and r are variables, so does this syntax mean that after the comma I set a name or label to the variables? because I tried to follow the same logic with 2d input math but it doesn´t work.
 

Using the help page of DataSets,Reference (below) and executing the first few commands, how do you expand to view more rows and columns of bdata? 

 

 

I am somewhat surprised to find that

PDEtools:-difforder(sin(diff(f(x),x)));

say, returns 1. Does that really make mathematical sense with diff(f(x),x) here being the argument of a function?

PS: I bumped into this issue because I was trying to write down some structured type, or some other matching criterium, that will return true for some scalarly quantity consisting of any number of functions and their derivatives if and only if all arguments to all functions have differential order zero. This criterium would exclude the above function, for instance.

Update: Just for the sake of completeness, or as a service to any visitor to this thread, the above was readily resolved as being due to a blunder of mine, see a comment of mine below. The thread, though, developed into a quite interesting one concerning issues with conserved currents, and related, in the case of Grassmann-odd quantities, issues that are at the time of writing still unresolved.

First 965 966 967 968 969 970 971 Last Page 967 of 2428