MaplePrimes Questions

I have two sets 

f:={1,2,3,4};

h:={1,2,4,5}

L=seq(i,i=1..4):

I want to program , if it is true that f[i] = h[i], then it prints f[i]. So the output should be {1,2}.

for i in L do
if evalb(f[i]=h[i]) then
print(f[i]);
end if;
end do;

I get no output. https://i.imgur.com/qA5hU3i.png

I tried changing the set f to list, f:= [1,2,3,4], still no output.

Hi...

 

I want to solve  this ODEs using Maple...

f’’’ + f f’’ – f’2 + λ θ = 0

(1/Pr) θ’’ + f θ’ – f’ θ = 0


and boundary conditions

f(0) = s,  f’(0) = σ + a f’’(0) + b f’’’(0),  θ(0) = 1,

f’(η) = 0, θ(η) = 0  as  η → ∞.

 

Can anyone help me to solve this problem? Thank you... =)

I want do loop with comand for to generate 20 arrays with radon variable 

I do

for i from 1 to 20 do
with(Statistics):
N:=RandomVariable(Normal(0,1)):
F_i:=Sample(N,20):
for k from 1 to 20 do
X[k] := evalf(F[k])
end do:
end do;

 

But bug all

hi 

how i can apply this differential in maple?

thabks...

 

hi .please help me for solve this equations.

bbb2.mw

restart; d[11] := 1; mu[11] := 1; q[311] := 1; d[33] := 1; mu[33] := 1; a[11] := 1; e[311] := 1; a[33] := 1; A := 1; g[111111] := 1; c[1111] := 1; g[113113] := 1; f[3113] := 1; beta[11] := 1; `ΔT` := 1; II := 1; L := 1

J := d[11]*(diff(Phi(x, z), x, x))+mu[11]*(diff(psi(x, z), x, x))+q[311]*(diff(w(x), x, x))+d[33]*(diff(Phi(x, z), z, z))+mu[33]*(diff(psi(x, z), z, z));

diff(diff(Phi(x, z), x), x)+diff(diff(psi(x, z), x), x)+diff(diff(w(x), x), x)+diff(diff(Phi(x, z), z), z)+diff(diff(psi(x, z), z), z)

(1)

B := a[11]*(diff(Phi(x, z), x, x))+d[11]*(diff(psi(x, z), x, x))+e[311]*(diff(w(x), x, x))+a[33]*(diff(Phi(x, z), z, z))+d[33]*(diff(psi(x, z), z, z));

diff(diff(Phi(x, z), x), x)+diff(diff(psi(x, z), x), x)+diff(diff(w(x), x), x)+diff(diff(Phi(x, z), z), z)+diff(diff(psi(x, z), z), z)

(2)

R := A*(g[111111]*(diff(u[0](x), x, x, x, x))-c[1111]*(diff(u[0](x), x, x)+(1/2)*(diff((diff(w(x), x))^2, x)))+e[311]*(diff(diff(Phi(x, z), z), x))+q[311]*(diff(diff(psi(x, z), z), x)));

diff(diff(diff(diff(u[0](x), x), x), x), x)-(diff(diff(u[0](x), x), x))-(diff(w(x), x))*(diff(diff(w(x), x), x))+diff(diff(Phi(x, z), x), z)+diff(diff(psi(x, z), x), z)

(3)

S := -II*g[111111]*(diff(w(x), x, x, x, x, x, x))-II*c[1111]*(diff(w(x), x, x, x, x))+A*g[113113]*(diff(w(x), x, x, x, x))-A*f[3113]*(diff(diff(Phi(x, z), z), x, x))-A*(c[1111]*(diff(u[0](x), x, x)+(1/2)*(diff((diff(w(x), x))^2, x)))+e[311]*(diff(diff(Phi(x, z), z), x))+q[311]*(diff(diff(psi(x, z), z), x)))*(diff(w(x), x))-A*(diff(w(x), x, x))*(c[1111]*(diff(u[0](x), x)+(1/2)*(diff(w(x), x))^2)+e[311]*(diff(Phi(x, z), z))+q[311]*(diff(psi(x, z), z))-beta[11]*`ΔT`);

-(diff(diff(diff(diff(diff(diff(w(x), x), x), x), x), x), x))-(diff(diff(diff(Phi(x, z), x), x), z))-(diff(diff(u[0](x), x), x)+(diff(w(x), x))*(diff(diff(w(x), x), x))+diff(diff(Phi(x, z), x), z)+diff(diff(psi(x, z), x), z))*(diff(w(x), x))-(diff(diff(w(x), x), x))*(diff(u[0](x), x)+(1/2)*(diff(w(x), x))^2+diff(Phi(x, z), z)+diff(psi(x, z), z)-1)

(4)

dsys := {B, J, R, S}; BCS := {D@@2*w(0) = 0, D@@2*w(L) = 0, Phi(x = 0) = 0, Phi(x = L) = 0, Phi(z = -(1/2)*h) = 0, Phi(z = (1/2)*h) = 0, psi(x = 0) = 0, psi(x = L) = 0, psi(z = -(1/2)*h) = 0, psi(z = (1/2)*h) = 0, w(x = 0) = 0, w(x = L) = 0, u[0](x = 0) = 0, u[0](x = L) = 0, (D(w))(0) = 0, (D(w))(L) = 0, (D(u[0]))(0) = 0, (D(u[0]))(L) = 0}

{D@@2*w(0) = 0, D@@2*w(L) = 0, Phi(x = 0) = 0, Phi(x = L) = 0, Phi(z = -(1/2)*h) = 0, Phi(z = (1/2)*h) = 0, psi(x = 0) = 0, psi(x = L) = 0, psi(z = -(1/2)*h) = 0, psi(z = (1/2)*h) = 0, w(x = 0) = 0, w(x = L) = 0, u[0](x = 0) = 0, u[0](x = L) = 0, (D(w))(0) = 0, (D(w))(L) = 0, (D(u[0]))(0) = 0, (D(u[0]))(L) = 0}

(5)

dsol5 := dsolve(dsys, numeric)

Error, (in dsolve/numeric/process_input) missing differential equations and initial or boundary conditions in the first argument: dsys

 

NULL

NULL

NULL

if former equations are not solvable , please help me for another way, in which at first two equation solve..in this way in equation [J and B] assume that q[311]=e[311]=0 and dsolve perform to find Φ and  ψ

after by finding Φ and  ψ is use for detemine w and u0

please see attached file below[bbb2_2.mw]

bbb2_2.mw

Download bbb2.mw

I have the following PDE system steaming from Flash Photolysis:

pdesys := [diff(J(x, t), x) = varepsilon*J(x, t)*C(x, t), diff(C(x, t), t) = phi*varepsilon*J(x, t)*C(x, t)]

when I use pdsolve(pdesys,[J,C]) I get:

{C(x, t) = 0, J(x, t) = _F1(t)}, {C(x, t) = _F1(x)*_C1, J(x, t) = 0}

The solution appears to be either C(x,t) = 0 or J(x,t) = 0. This are the obvious solutions (0 = 0). I have the analytical solution to this PDE system where neither C(x,t) nor J(x,t) are 0.

How to solve this system in maple? Thanks.

 

Hi

In attached mw file I have a equation that "a" is in unknown parameter. X and Y are matrixes of data. How can I calculate the "a" parameter?

Best regard

question.mw

Example 6 from Maple Help.

 

restart:

with(Optimization):

LPSolve(2*x+5*y, {3*x-y = 1, x-y <= 5}, assume = {integer, nonnegative})

 

Kernel crash the same with Maple 2015.

 

Does anyone can confirm?

Mariusz Iwaniuk

hi.please help me for solve this equation

i encounter with error''

Error, (in StringTools:-IsPrefix) second argument must be a string''

equations which be solved attached as pdf file

thanks

Kernel4.mw

root.pdf


 

restart

with(LinearAlgebra):

Typesetting:-Settings(functionassign=false):

NULL

Constants

 

landa := 0.404e11; -1; mu := 0.27e11; -1; alpha := 0.23e-4; -1; rho := 2707; -1; k := 204; -1; c := 903; -1; nu := .3; -1; E := 0.70e11; -1; T0 := 293; -1; omega := 0.1e-1

0.1e-1

(1.1.1)

beta := alpha*(3*landa+2*mu):

NULL

varpi := 0.1e-1; -1; No := 15

15

(1.1.2)

 

 

Eq[1] := besselj(0, xi*b)*(eval(diff(bessely(0, xi*r), r), r = a))-(eval(diff(besselj(0, xi*r), r), r = a))*bessely(0, xi*b):

 

wf1 := unapply(Eq[1], xi):

1

 

1.794010904

 

1

 

2

 

1.794010904

 

1

 

3

 

4.802060761

 

2

 

4

 

4.802060761

 

2

 

5

 

4.802060761

 

2

 

6

 

7.908961712

 

3

 

7

 

7.908961712

 

3

 

8

 

7.908961712

 

3

 

9

 

11.03509457

 

4

 

10

 

11.03509457

 

4

 

11

 

11.03509457

 

4

 

12

 

11.03509457

 

4

 

13

 

14.16798650

 

5

 

14

 

14.16798650

 

5

 

15

 

14.16798650

 

5

 

16

 

17.30400975

 

6

(1.2.1)

Eq[2] := MTM:-besselj(1, eta*b)*(eval(diff(MTM:-bessely(1, eta*r), r), r = a))-(eval(diff(MTM:-besselj(1, eta*r), r), r = a))*MTM:-bessely(1, eta*b):

wf2 := unapply(Eq[2], eta):

1

 

1.958510605

 

1

 

2

 

1.958510605

 

1

 

3

 

4.857021628

 

2

 

4

 

4.857021628

 

2

 

5

 

4.857021628

 

2

 

6

 

7.941288451

 

3

 

7

 

7.941288451

 

3

 

8

 

7.941288451

 

3

 

9

 

11.05802155

 

4

 

10

 

11.05802155

 

4

 

11

 

11.05802155

 

4

 

12

 

11.05802155

 

4

 

13

 

14.18576207

 

5

 

14

 

14.18576207

 

5

 

15

 

14.18576207

 

5

 

16

 

17.31852918

 

6

(1.2.2)

 

for m to MM do K0[m] := proc (r, m) options operator, arrow; BesselJ(0, xi[m]*r)*BesselY(0, xi[m]*b)-BesselJ(0, xi[m]*b)*BesselY(0, xi[m]*r) end proc; KK0[m] := proc (r, m) options operator, arrow; diff(K0[m](r, m), r) end proc; K1[n] := proc (r, n) options operator, arrow; BesselJ(1, eta__n*r)*BesselY(1, eta__n*b)-BesselJ(1, eta__n*b)*BesselY(1, eta__n*r) end proc; KK1[n] := proc (r, n) options operator, arrow; diff(K1[n](r, n), r) end proc end do

proc (r, m) options operator, arrow; BesselJ(0, xi[m]*r)*BesselY(0, xi[m]*b)-BesselJ(0, xi[m]*b)*BesselY(0, xi[m]*r) end proc

 

proc (r, m) options operator, arrow; MTM:-diff(K0[m](r, m), r) end proc

 

proc (r, n) options operator, arrow; BesselJ(1, eta__n*r)*BesselY(1, eta__n*b)-BesselJ(1, eta__n*b)*BesselY(1, eta__n*r) end proc

 

proc (r, n) options operator, arrow; MTM:-diff(K1[n](r, n), r) end proc

 

proc (r, m) options operator, arrow; BesselJ(0, xi[m]*r)*BesselY(0, xi[m]*b)-BesselJ(0, xi[m]*b)*BesselY(0, xi[m]*r) end proc

 

proc (r, m) options operator, arrow; MTM:-diff(K0[m](r, m), r) end proc

 

proc (r, n) options operator, arrow; BesselJ(1, eta__n*r)*BesselY(1, eta__n*b)-BesselJ(1, eta__n*b)*BesselY(1, eta__n*r) end proc

 

proc (r, n) options operator, arrow; MTM:-diff(K1[n](r, n), r) end proc

 

proc (r, m) options operator, arrow; BesselJ(0, xi[m]*r)*BesselY(0, xi[m]*b)-BesselJ(0, xi[m]*b)*BesselY(0, xi[m]*r) end proc

 

proc (r, m) options operator, arrow; MTM:-diff(K0[m](r, m), r) end proc

 

proc (r, n) options operator, arrow; BesselJ(1, eta__n*r)*BesselY(1, eta__n*b)-BesselJ(1, eta__n*b)*BesselY(1, eta__n*r) end proc

 

proc (r, n) options operator, arrow; MTM:-diff(K1[n](r, n), r) end proc

 

proc (r, m) options operator, arrow; BesselJ(0, xi[m]*r)*BesselY(0, xi[m]*b)-BesselJ(0, xi[m]*b)*BesselY(0, xi[m]*r) end proc

 

proc (r, m) options operator, arrow; MTM:-diff(K0[m](r, m), r) end proc

 

proc (r, n) options operator, arrow; BesselJ(1, eta__n*r)*BesselY(1, eta__n*b)-BesselJ(1, eta__n*b)*BesselY(1, eta__n*r) end proc

 

proc (r, n) options operator, arrow; MTM:-diff(K1[n](r, n), r) end proc

 

proc (r, m) options operator, arrow; BesselJ(0, xi[m]*r)*BesselY(0, xi[m]*b)-BesselJ(0, xi[m]*b)*BesselY(0, xi[m]*r) end proc

 

proc (r, m) options operator, arrow; MTM:-diff(K0[m](r, m), r) end proc

 

proc (r, n) options operator, arrow; BesselJ(1, eta__n*r)*BesselY(1, eta__n*b)-BesselJ(1, eta__n*b)*BesselY(1, eta__n*r) end proc

 

proc (r, n) options operator, arrow; MTM:-diff(K1[n](r, n), r) end proc

 

proc (r, m) options operator, arrow; BesselJ(0, xi[m]*r)*BesselY(0, xi[m]*b)-BesselJ(0, xi[m]*b)*BesselY(0, xi[m]*r) end proc

 

proc (r, m) options operator, arrow; MTM:-diff(K0[m](r, m), r) end proc

 

proc (r, n) options operator, arrow; BesselJ(1, eta__n*r)*BesselY(1, eta__n*b)-BesselJ(1, eta__n*b)*BesselY(1, eta__n*r) end proc

 

proc (r, n) options operator, arrow; MTM:-diff(K1[n](r, n), r) end proc

(1.2.3)

U1 := -(int(r*K0[m]*(diff(K1[n], r)+K1[n]/r), r = a .. b))/(int(r*K0[m]^2, r = a .. b)); -1; U2 := -(int(r*K1[n]*(diff(K0[m], r)), r = a .. b))/(int(r*K1[n]^2, r = a .. b)); -1; U3 := (int(r^2*omega^2*K1[n], r = a .. b))/(int(r*K1[n]^2, r = a .. b))

0.1555555555e-3/K1[0]

(1.2.4)

m := 0; -1; for m to MM do M__m := int(r*K1[m](r, m)^2, r = a .. b); bb__m := 1/M__m end do

int(r*K1[1](r, 1)^2, r = 1 .. 2)

 

1/(int(r*K1[1](r, 1)^2, r = 1 .. 2))

 

int(r*K1[2](r, 2)^2, r = 1 .. 2)

 

1/(int(r*K1[2](r, 2)^2, r = 1 .. 2))

 

int(r*K1[3](r, 3)^2, r = 1 .. 2)

 

1/(int(r*K1[3](r, 3)^2, r = 1 .. 2))

 

int(r*K1[4](r, 4)^2, r = 1 .. 2)

 

1/(int(r*K1[4](r, 4)^2, r = 1 .. 2))

 

int(r*K1[5](r, 5)^2, r = 1 .. 2)

 

1/(int(r*K1[5](r, 5)^2, r = 1 .. 2))

 

int(r*K1[6](r, 6)^2, r = 1 .. 2)

 

1/(int(r*K1[6](r, 6)^2, r = 1 .. 2))

(1.2.5)

MM; 1; n; 1; m; 1; U1; 1; U2; 1; U3; 1; xi

6

 

0

 

7

 

-(2/3)*K1[0]/K0[7]

 

0

 

0.1555555555e-3/K1[0]

 

xi

(1.2.6)

for m to MM do for n to MM do dsys := {diff(S[m][n](t), t, t, t)+xi^2*[m]*(diff(S[m][n](t), t, t))+(-U1*U2+`&eta;__&eta;__n__`^2)*(diff(S[m][n](t), t))+xi[m]^2*`&eta;__&eta;__n__`^2*S[m][n](t) = -(2*U2*bb[m]/(Pi*xi[m])*(-BesselJ(0, xi[m]*b)/BesselJ(1, xi[m]*a)))*q+xi^2*[m]*U3} end do end do; sol := dsolve(dsys)

Error, (in StringTools:-IsPrefix) second argument must be a string

 

 

NULL

for m to MM do for n to MM do dsys2 := {diff(Q__mn(t), t, t, t)+xi[m]^2*(diff(Q__mn(t), t, t))+(-U1*U2+eta__n^2)*(diff(Q__mn(t), t))+xi[m]^2*eta__n^2*Q__mn(t) = -2*BesselJ(0, xi[m]*b)*U1*U2*b__m*(1-exp(-xi[m]^2*t))/(BesselJ(1, xi[m]*a)*Pi*xi[m]^3)} end do end do;

sol2 := dsolve(dsys2)

Error, (in dsolve) invalid input: `PDEtools/sdsolve` expects its 1st argument, SYS, to be of type Or(set({`<>`, `=`, algebraic}), list({`<>`, `=`, algebraic}), `casesplit/ans`(list, list)), but received [{Q__mn(t)*pochhammer(1-n, n)+(1497143767/5000000)*(diff(Q__mn(t), [`$`(t, t)]))+eta__n^2*(diff(Q__mn(t), t))+(1497143767/5000000)*eta__n^2*Q__mn(t) = 0}]

 

``

NULL

NULL

 

Download Kernel4.mw

Hi

First question is, given a list of some positive integers, how can I normalize this list? Normalize here is in the sense that, for example, if 

L := [1,3,4,4,5,7,7,7,8]

then there really are only 6 different integers appear, so I would like to assign each part an integer from 1 to 6 in ascending order. So 1 becomes 1, 3 becomes 2, 4 becomes 3, 5 becomes 4, 7 becomes 5 and so on. Normalized list will be

NormalizedL := [1,2,3,3,4,5,5,5,6]

 

Second question is given a list, let's say [1,3,1,3,2,2,4,4], how can I normalize it in a similar way but now we assign each integer upon occurrence of a part. So [1,3,1,3,2,2,4,4] will be [1,2,1,2,3,3,4,4]. This is necessary for me because lists have repeating parts. 

Another example will be [2,4,4,1,2,2,3,3] will be [1,2,2,3,1,1,4,4]. 

Thank you 

How to know how long the animation last and how to stop gif at the end.

I created a GIF from exporttool but I don't know how long is the animation ? I mean when it stops at the end of value. Or how to make GIF run as real time. because I make a gif for showing how a thing fall down from a attitude. And I need to show some figure like t (time) , h ( high ), v( speed ) thing like that while it falling down.

Thanks

My query is related to Maple packages "Lie algebra" and "DifferentialGeometry", I wonder can these packages help me to check isomophism between to Lie algebras, for example, suppose I have a 4-dim Lie algebra with commutation relations:

[e2, e3] = e3, [e2, e4] = - e4, [e3, e4] = - e1 

and another 4-dim Lie algebra with commutation relations

[e2, e3] = e1, [e4, e2] = e2, [e3, e4] = - e3

Can I check for isomophism between these Lie algebras if there is any using Lie algebra package ?

 

Regards

How to hum program repeat several times and save what data result from each time it runs?

Hello! 

In an assigment I have been asked to use the Eigenvectors command to find the eigenvalues and eigenvectors of a particular matrix. 

As highlighted in the following image, my questions are:

1. What is the meaning of the suffix "+0.I"? Does it mean that there are further decimal digits which are not displayed?

2. How do the first and third eigenvalues, which are equal, result in different eigenvectors? As per my understanding, equal eigenvalues should have equal corresponding eigenvectors. Please help.

I need to plot a path with curvilinear coordinates. Knowing the curvature theta and length s of  parts that compose it, I found the equations of x and y as a function of the parameter s that goes from zero to the total length.
I make an example below:

for 0 <s <2,     x = s     and

                     y = 0 (straight line)

 

for 2 <s <2 + Pi,        x = 2 + 2 * sin ((s-2) / 2)      and

                              y = 2 * (1-cos ((s-2) / 2)

Now I want to find the corresponding plot of x (s), y (s) (without showing s as coordinate) but I do not know what commands I can use. Can you suggest me something? Thank you

First 1113 1114 1115 1116 1117 1118 1119 Last Page 1115 of 2434