MaplePrimes Questions

in Maple 2025 on Linux, I see random Error, (in evala/Factors) the modular inverse does not exist from call to allvalues().

Sometimes it happens and sometimes not. Any explanation of this?

 

It seems Maple uses random number generatror to decide when to generate an internal error as I am not able to see a pattern.

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1868. The version installed in this computer is 1866 created 2025, May 6, 10:52 hours Pacific Time, found in the directory /home/me/maple/toolbox/2025/Physics Updates/lib/`

SupportTools:-Version();

`The Customer Support Updates version in the MapleCloud is 17 and is the same as the version installed in this computer, created May 5, 2025, 12:37 hours Eastern Time.`

restart;

kernelopts('assertlevel'=2):

sol:=[1/3*exp(RootOf(-5*I*Pi-ln(256/(x+1)^6/(exp(_Z)^81+9)*(exp(_Z)^81+3)^3)+162*_Z))^81+2];
allvalues(sol);

[(1/3)*(exp(RootOf(-(5*I)*Pi-ln(256*((exp(_Z))^81+3)^3/((x+1)^6*((exp(_Z))^81+9)))+162*_Z)))^81+2]

Error, (in evala/Factors) the modular inverse does not exist

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

Error, (in evala/Factors) the modular inverse does not exist

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

Error, (in evala/Factors) the modular inverse does not exist

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

 


 

Download why_fail_sometimes_may_11_2025_V2.mw

Update was able to produce this also in Maple 2024.2 on windows

interface(version);

`Standard Worksheet Interface, Maple 2024.2, Windows 10, October 29 2024 Build ID 1872373`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1868. The version installed in this computer is 1849 created 2025, March 12, 12:37 hours Pacific Time, found in the directory C:\Users\Owner\maple\toolbox\2024\Physics Updates\lib\`

restart;

kernelopts('assertlevel'=2):
sol:=[1/3*exp(RootOf(-5*I*Pi-ln(256/(x+1)^6/(exp(_Z)^81+9)*(exp(_Z)^81+3)^3)+162*_Z))^81+2];
allvalues(sol);

[(1/3)*(exp(RootOf(-(5*I)*Pi-ln(256*((exp(_Z))^81+3)^3/((x+1)^6*((exp(_Z))^81+9)))+162*_Z)))^81+2]

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

Error, (in evala/Factors) the modular inverse does not exist

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

Error, (in evala/Factors) the modular inverse does not exist

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

Error, (in evala/Factors) the modular inverse does not exist

 


 

Download modular_inverse_maple_2024_2.mw

 

Hi, I'm new to Maple.

when nesting some multiplications in a summation operator, I get results that I can't figure out.

I've entered 4 formulas that should give the same result, if I understood things correctly. The formula FB gives me problems; am I doing something wrong, or is there a bug in Maple? The problem arose in a more complicated formula, but I trimmed the formula down to a minimum, in order to illustrate the discrepancy.

I hope someone can shed some light on this, because I'm stuck.

Is this a bug (the correct answer = 2)?

 

restart

 

FA := modp(5, product(2, t = 0 .. modp(1-1, 3)))+modp(5, product(2, t = 0 .. modp(2-1, 3))); FB := sum(modp(5, product(2, t = 0 .. modp(q-1, 3))), q = 1 .. 2)

10

(1)

FC := modp(5, product(2, t = 0 .. modp(0, 3)))+modp(5, product(2, t = 0 .. modp(1, 3))); FD := sum(modp(5, product(2, t = 0 .. modp(q, 3))), q = 0 .. 1)

2

(2)

NULL

FA := modp(5, product(2, t = 0 .. modp(1 - 1, 3))) + modp(5, product(2, t = 0 .. modp(2 - 1, 3)));

2

(3)

 

FB := sum(modp(5, product(2, t = 0 .. modp(q - 1, 3))), q = 1 .. 2);

10

(4)

 

FC := modp(5, product(2, t = 0 .. modp(0, 3))) + modp(5, product(2, t = 0 .. modp(1, 3)));

2

(5)

NULL

FD := sum(modp(5, product(2, t = 0 .. modp(q, 3))), q = 0 .. 1);

2

(6)

NULL

Download BugTestSimple.mw

How do I find the solutions "links" with only answers in the range 0 to +1? The domain of vgl is 0 <=beta <= 1. If the system is inconsistent or insufficient to solve xi (for example, if xi does not appear in the equation) then give the text "no solution". If there is a solution then show it. Filter only real solutions. Please help me with better code:

restart;
assume(beta > 0, beta < 1):
interface(showassumed=0):

vgl[1] := -((beta*xi^2 + 2*xi^2 - beta)*(beta - 1)^2)/4 = 0:  # or some other equation (sometimes xi does not appear in the equation)

if has(lhs(vgl[1]), xi) or has(rhs(vgl[1]), xi) then
    links := solve([vgl[1], xi > 0, xi < beta], xi):
    # Filter only real solutions
    links_real := select(x -> type(x, equation) and is(Im(rhs(x)) = 0), [links]):
    if nops(links_real) > 0 then
        x1 := links_real;
        print("Real solution(s):", x1);
    else
        print("No real solution in range for xi.");
    end if;
else
    print("The equation does not contain xi — solving for xi is not possible.");
end if;

 

I would like to automatically select a set of parameters that gives me a "good" solution, ideally, one where not all parameters are zero. The parameters A[0], A[1], A[2], B[1], and B[2] are essential and must always be included. The other parameters are optional and can be selected in various combinations (e.g., one, two, or more at a time).

Currently, I manually add or remove these optional parameters, which is time-consuming. I’m looking for a way to automate the selection process to find the best combination of parameters that yields a valid and meaningful (non-zero) solution.

How can I approach this systematically?

params.mw

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

with(LargeExpressions)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, t), quiet); declare(V(xi), quiet); declare(U(xi), quiet)

NULL

CoefficientNullity := [0 = k^3*(beta*s-w)*(A[0]+A[1]+A[2]+B[1]+B[2])*(-5*beta*s*A[0]^2*c[2]-10*beta*s*A[0]*A[1]*c[2]-10*beta*s*A[0]*A[2]*c[2]-10*beta*s*A[0]*B[1]*c[2]-10*beta*s*A[0]*B[2]*c[2]-5*beta*s*A[1]^2*c[2]-10*beta*s*A[1]*A[2]*c[2]-10*beta*s*A[1]*B[1]*c[2]-10*beta*s*A[1]*B[2]*c[2]-5*beta*s*A[2]^2*c[2]-10*beta*s*A[2]*B[1]*c[2]-10*beta*s*A[2]*B[2]*c[2]-5*beta*s*B[1]^2*c[2]-10*beta*s*B[1]*B[2]*c[2]-5*beta*s*B[2]^2*c[2]+3*beta*k*s*w+5*w*A[0]^2*c[2]+10*w*A[0]*A[1]*c[2]+10*w*A[0]*A[2]*c[2]+10*w*A[0]*B[1]*c[2]+10*w*A[0]*B[2]*c[2]+5*w*A[1]^2*c[2]+10*w*A[1]*A[2]*c[2]+10*w*A[1]*B[1]*c[2]+10*w*A[1]*B[2]*c[2]+5*w*A[2]^2*c[2]+10*w*A[2]*B[1]*c[2]+10*w*A[2]*B[2]*c[2]+5*w*B[1]^2*c[2]+10*w*B[1]*B[2]*c[2]+5*w*B[2]^2*c[2]+2*k*s^2-5*k*w^2), 0 = (beta*s-w)*(5*beta*k^3*s*A[0]^3*c[2]-15*beta*k^3*s*A[0]^2*A[1]*c[2]-45*beta*k^3*s*A[0]^2*A[2]*c[2]+45*beta*k^3*s*A[0]^2*B[1]*c[2]+45*beta*k^3*s*A[0]^2*B[2]*c[2]-45*beta*k^3*s*A[0]*A[1]^2*c[2]-150*beta*k^3*s*A[0]*A[1]*A[2]*c[2]+30*beta*k^3*s*A[0]*A[1]*B[1]*c[2]+30*beta*k^3*s*A[0]*A[1]*B[2]*c[2]-105*beta*k^3*s*A[0]*A[2]^2*c[2]-30*beta*k^3*s*A[0]*A[2]*B[1]*c[2]-30*beta*k^3*s*A[0]*A[2]*B[2]*c[2]+75*beta*k^3*s*A[0]*B[1]^2*c[2]+150*beta*k^3*s*A[0]*B[1]*B[2]*c[2]+75*beta*k^3*s*A[0]*B[2]^2*c[2]-25*beta*k^3*s*A[1]^3*c[2]-105*beta*k^3*s*A[1]^2*A[2]*c[2]-15*beta*k^3*s*A[1]^2*B[1]*c[2]-15*beta*k^3*s*A[1]^2*B[2]*c[2]-135*beta*k^3*s*A[1]*A[2]^2*c[2]-90*beta*k^3*s*A[1]*A[2]*B[1]*c[2]-90*beta*k^3*s*A[1]*A[2]*B[2]*c[2]+45*beta*k^3*s*A[1]*B[1]^2*c[2]+90*beta*k^3*s*A[1]*B[1]*B[2]*c[2]+45*beta*k^3*s*A[1]*B[2]^2*c[2]-55*beta*k^3*s*A[2]^3*c[2]-75*beta*k^3*s*A[2]^2*B[1]*c[2]-75*beta*k^3*s*A[2]^2*B[2]*c[2]+15*beta*k^3*s*A[2]*B[1]^2*c[2]+30*beta*k^3*s*A[2]*B[1]*B[2]*c[2]+15*beta*k^3*s*A[2]*B[2]^2*c[2]+35*beta*k^3*s*B[1]^3*c[2]+105*beta*k^3*s*B[1]^2*B[2]*c[2]+105*beta*k^3*s*B[1]*B[2]^2*c[2]+35*beta*k^3*s*B[2]^3*c[2]-3*beta*k^4*s*w*A[0]+3*beta*k^4*s*w*A[1]+9*beta*k^4*s*w*A[2]-9*beta*k^4*s*w*B[1]-9*beta*k^4*s*w*B[2]-5*k^3*w*A[0]^3*c[2]+15*k^3*w*A[0]^2*A[1]*c[2]+45*k^3*w*A[0]^2*A[2]*c[2]-45*k^3*w*A[0]^2*B[1]*c[2]-45*k^3*w*A[0]^2*B[2]*c[2]+45*k^3*w*A[0]*A[1]^2*c[2]+150*k^3*w*A[0]*A[1]*A[2]*c[2]-30*k^3*w*A[0]*A[1]*B[1]*c[2]-30*k^3*w*A[0]*A[1]*B[2]*c[2]+105*k^3*w*A[0]*A[2]^2*c[2]+30*k^3*w*A[0]*A[2]*B[1]*c[2]+30*k^3*w*A[0]*A[2]*B[2]*c[2]-75*k^3*w*A[0]*B[1]^2*c[2]-150*k^3*w*A[0]*B[1]*B[2]*c[2]-75*k^3*w*A[0]*B[2]^2*c[2]+25*k^3*w*A[1]^3*c[2]+105*k^3*w*A[1]^2*A[2]*c[2]+15*k^3*w*A[1]^2*B[1]*c[2]+15*k^3*w*A[1]^2*B[2]*c[2]+135*k^3*w*A[1]*A[2]^2*c[2]+90*k^3*w*A[1]*A[2]*B[1]*c[2]+90*k^3*w*A[1]*A[2]*B[2]*c[2]-45*k^3*w*A[1]*B[1]^2*c[2]-90*k^3*w*A[1]*B[1]*B[2]*c[2]-45*k^3*w*A[1]*B[2]^2*c[2]+55*k^3*w*A[2]^3*c[2]+75*k^3*w*A[2]^2*B[1]*c[2]+75*k^3*w*A[2]^2*B[2]*c[2]-15*k^3*w*A[2]*B[1]^2*c[2]-30*k^3*w*A[2]*B[1]*B[2]*c[2]-15*k^3*w*A[2]*B[2]^2*c[2]-35*k^3*w*B[1]^3*c[2]-105*k^3*w*B[1]^2*B[2]*c[2]-105*k^3*w*B[1]*B[2]^2*c[2]-35*k^3*w*B[2]^3*c[2]+40*beta^2*k^2*s^2*A[1]+80*beta^2*k^2*s^2*A[2]-40*beta^2*k^2*s^2*B[1]-40*beta^2*k^2*s^2*B[2]-2*k^4*s^2*A[0]+2*k^4*s^2*A[1]+6*k^4*s^2*A[2]-6*k^4*s^2*B[1]-6*k^4*s^2*B[2]+5*k^4*w^2*A[0]-5*k^4*w^2*A[1]-15*k^4*w^2*A[2]+15*k^4*w^2*B[1]+15*k^4*w^2*B[2]-80*beta*k^2*s*w*A[1]-160*beta*k^2*s*w*A[2]+80*beta*k^2*s*w*B[1]+80*beta*k^2*s*w*B[2]+40*k^2*s^2*A[1]+80*k^2*s^2*A[2]-40*k^2*s^2*B[1]-40*k^2*s^2*B[2]-160*beta*s*w*A[1]-320*beta*s*w*A[2]+160*beta*s*w*B[1]+160*beta*s*w*B[2]+160*s^2*A[1]+320*s^2*A[2]-160*s^2*B[1]-160*s^2*B[2]), 0 = (beta*s-w)*(25*beta*k^3*s*A[0]^3*c[2]+75*beta*k^3*s*A[0]^2*A[1]*c[2]+15*beta*k^3*s*A[0]^2*A[2]*c[2]+15*beta*k^3*s*A[0]^2*B[1]*c[2]+15*beta*k^3*s*A[0]^2*B[2]*c[2]+15*beta*k^3*s*A[0]*A[1]^2*c[2]-210*beta*k^3*s*A[0]*A[1]*A[2]*c[2]+150*beta*k^3*s*A[0]*A[1]*B[1]*c[2]+150*beta*k^3*s*A[0]*A[1]*B[2]*c[2]-285*beta*k^3*s*A[0]*A[2]^2*c[2]+150*beta*k^3*s*A[0]*A[2]*B[1]*c[2]+150*beta*k^3*s*A[0]*A[2]*B[2]*c[2]-105*beta*k^3*s*A[0]*B[1]^2*c[2]-210*beta*k^3*s*A[0]*B[1]*B[2]*c[2]-105*beta*k^3*s*A[0]*B[2]^2*c[2]-35*beta*k^3*s*A[1]^3*c[2]-285*beta*k^3*s*A[1]^2*A[2]*c[2]+75*beta*k^3*s*A[1]^2*B[1]*c[2]+75*beta*k^3*s*A[1]^2*B[2]*c[2]-525*beta*k^3*s*A[1]*A[2]^2*c[2]+30*beta*k^3*s*A[1]*A[2]*B[1]*c[2]+30*beta*k^3*s*A[1]*A[2]*B[2]*c[2]+15*beta*k^3*s*A[1]*B[1]^2*c[2]+30*beta*k^3*s*A[1]*B[1]*B[2]*c[2]+15*beta*k^3*s*A[1]*B[2]^2*c[2]-275*beta*k^3*s*A[2]^3*c[2]-105*beta*k^3*s*A[2]^2*B[1]*c[2]-105*beta*k^3*s*A[2]^2*B[2]*c[2]+75*beta*k^3*s*A[2]*B[1]^2*c[2]+150*beta*k^3*s*A[2]*B[1]*B[2]*c[2]+75*beta*k^3*s*A[2]*B[2]^2*c[2]-95*beta*k^3*s*B[1]^3*c[2]-285*beta*k^3*s*B[1]^2*B[2]*c[2]-285*beta*k^3*s*B[1]*B[2]^2*c[2]-95*beta*k^3*s*B[2]^3*c[2]-15*beta*k^4*s*w*A[0]-15*beta*k^4*s*w*A[1]-3*beta*k^4*s*w*A[2]-3*beta*k^4*s*w*B[1]-3*beta*k^4*s*w*B[2]-25*k^3*w*A[0]^3*c[2]-75*k^3*w*A[0]^2*A[1]*c[2]-15*k^3*w*A[0]^2*A[2]*c[2]-15*k^3*w*A[0]^2*B[1]*c[2]-15*k^3*w*A[0]^2*B[2]*c[2]-15*k^3*w*A[0]*A[1]^2*c[2]+210*k^3*w*A[0]*A[1]*A[2]*c[2]-150*k^3*w*A[0]*A[1]*B[1]*c[2]-150*k^3*w*A[0]*A[1]*B[2]*c[2]+285*k^3*w*A[0]*A[2]^2*c[2]-150*k^3*w*A[0]*A[2]*B[1]*c[2]-150*k^3*w*A[0]*A[2]*B[2]*c[2]+105*k^3*w*A[0]*B[1]^2*c[2]+210*k^3*w*A[0]*B[1]*B[2]*c[2]+105*k^3*w*A[0]*B[2]^2*c[2]+35*k^3*w*A[1]^3*c[2]+285*k^3*w*A[1]^2*A[2]*c[2]-75*k^3*w*A[1]^2*B[1]*c[2]-75*k^3*w*A[1]^2*B[2]*c[2]+525*k^3*w*A[1]*A[2]^2*c[2]-30*k^3*w*A[1]*A[2]*B[1]*c[2]-30*k^3*w*A[1]*A[2]*B[2]*c[2]-15*k^3*w*A[1]*B[1]^2*c[2]-30*k^3*w*A[1]*B[1]*B[2]*c[2]-15*k^3*w*A[1]*B[2]^2*c[2]+275*k^3*w*A[2]^3*c[2]+105*k^3*w*A[2]^2*B[1]*c[2]+105*k^3*w*A[2]^2*B[2]*c[2]-75*k^3*w*A[2]*B[1]^2*c[2]-150*k^3*w*A[2]*B[1]*B[2]*c[2]-75*k^3*w*A[2]*B[2]^2*c[2]+95*k^3*w*B[1]^3*c[2]+285*k^3*w*B[1]^2*B[2]*c[2]+285*k^3*w*B[1]*B[2]^2*c[2]+95*k^3*w*B[2]^3*c[2]+120*beta^2*k^2*s^2*A[1]+560*beta^2*k^2*s^2*A[2]+200*beta^2*k^2*s^2*B[1]+200*beta^2*k^2*s^2*B[2]-10*k^4*s^2*A[0]-10*k^4*s^2*A[1]-2*k^4*s^2*A[2]-2*k^4*s^2*B[1]-2*k^4*s^2*B[2]+25*k^4*w^2*A[0]+25*k^4*w^2*A[1]+5*k^4*w^2*A[2]+5*k^4*w^2*B[1]+5*k^4*w^2*B[2]-240*beta*k^2*s*w*A[1]-1120*beta*k^2*s*w*A[2]-400*beta*k^2*s*w*B[1]-400*beta*k^2*s*w*B[2]+120*k^2*s^2*A[1]+560*k^2*s^2*A[2]+200*k^2*s^2*B[1]+200*k^2*s^2*B[2]-2400*beta*s*w*A[1]-9920*beta*s*w*A[2]-2720*beta*s*w*B[1]-2720*beta*s*w*B[2]+2400*s^2*A[1]+9920*s^2*A[2]+2720*s^2*B[1]+2720*s^2*B[2]), 0 = (beta*s-w)*(-25*beta*k^3*s*A[0]^3*c[2]+75*beta*k^3*s*A[0]^2*A[1]*c[2]+165*beta*k^3*s*A[0]^2*A[2]*c[2]-165*beta*k^3*s*A[0]^2*B[1]*c[2]-165*beta*k^3*s*A[0]^2*B[2]*c[2]+165*beta*k^3*s*A[0]*A[1]^2*c[2]+150*beta*k^3*s*A[0]*A[1]*A[2]*c[2]-150*beta*k^3*s*A[0]*A[1]*B[1]*c[2]-150*beta*k^3*s*A[0]*A[1]*B[2]*c[2]-315*beta*k^3*s*A[0]*A[2]^2*c[2]+150*beta*k^3*s*A[0]*A[2]*B[1]*c[2]+150*beta*k^3*s*A[0]*A[2]*B[2]*c[2]-75*beta*k^3*s*A[0]*B[1]^2*c[2]-150*beta*k^3*s*A[0]*B[1]*B[2]*c[2]-75*beta*k^3*s*A[0]*B[2]^2*c[2]+25*beta*k^3*s*A[1]^3*c[2]-315*beta*k^3*s*A[1]^2*A[2]*c[2]+75*beta*k^3*s*A[1]^2*B[1]*c[2]+75*beta*k^3*s*A[1]^2*B[2]*c[2]-1125*beta*k^3*s*A[1]*A[2]^2*c[2]+330*beta*k^3*s*A[1]*A[2]*B[1]*c[2]+330*beta*k^3*s*A[1]*A[2]*B[2]*c[2]-165*beta*k^3*s*A[1]*B[1]^2*c[2]-330*beta*k^3*s*A[1]*B[1]*B[2]*c[2]-165*beta*k^3*s*A[1]*B[2]^2*c[2]-825*beta*k^3*s*A[2]^3*c[2]+75*beta*k^3*s*A[2]^2*B[1]*c[2]+75*beta*k^3*s*A[2]^2*B[2]*c[2]-75*beta*k^3*s*A[2]*B[1]^2*c[2]-150*beta*k^3*s*A[2]*B[1]*B[2]*c[2]-75*beta*k^3*s*A[2]*B[2]^2*c[2]+105*beta*k^3*s*B[1]^3*c[2]+315*beta*k^3*s*B[1]^2*B[2]*c[2]+315*beta*k^3*s*B[1]*B[2]^2*c[2]+105*beta*k^3*s*B[2]^3*c[2]+15*beta*k^4*s*w*A[0]-15*beta*k^4*s*w*A[1]-33*beta*k^4*s*w*A[2]+33*beta*k^4*s*w*B[1]+33*beta*k^4*s*w*B[2]+25*k^3*w*A[0]^3*c[2]-75*k^3*w*A[0]^2*A[1]*c[2]-165*k^3*w*A[0]^2*A[2]*c[2]+165*k^3*w*A[0]^2*B[1]*c[2]+165*k^3*w*A[0]^2*B[2]*c[2]-165*k^3*w*A[0]*A[1]^2*c[2]-150*k^3*w*A[0]*A[1]*A[2]*c[2]+150*k^3*w*A[0]*A[1]*B[1]*c[2]+150*k^3*w*A[0]*A[1]*B[2]*c[2]+315*k^3*w*A[0]*A[2]^2*c[2]-150*k^3*w*A[0]*A[2]*B[1]*c[2]-150*k^3*w*A[0]*A[2]*B[2]*c[2]+75*k^3*w*A[0]*B[1]^2*c[2]+150*k^3*w*A[0]*B[1]*B[2]*c[2]+75*k^3*w*A[0]*B[2]^2*c[2]-25*k^3*w*A[1]^3*c[2]+315*k^3*w*A[1]^2*A[2]*c[2]-75*k^3*w*A[1]^2*B[1]*c[2]-75*k^3*w*A[1]^2*B[2]*c[2]+1125*k^3*w*A[1]*A[2]^2*c[2]-330*k^3*w*A[1]*A[2]*B[1]*c[2]-330*k^3*w*A[1]*A[2]*B[2]*c[2]+165*k^3*w*A[1]*B[1]^2*c[2]+330*k^3*w*A[1]*B[1]*B[2]*c[2]+165*k^3*w*A[1]*B[2]^2*c[2]+825*k^3*w*A[2]^3*c[2]-75*k^3*w*A[2]^2*B[1]*c[2]-75*k^3*w*A[2]^2*B[2]*c[2]+75*k^3*w*A[2]*B[1]^2*c[2]+150*k^3*w*A[2]*B[1]*B[2]*c[2]+75*k^3*w*A[2]*B[2]^2*c[2]-105*k^3*w*B[1]^3*c[2]-315*k^3*w*B[1]^2*B[2]*c[2]-315*k^3*w*B[1]*B[2]^2*c[2]-105*k^3*w*B[2]^3*c[2]+1120*beta^2*k^2*s^2*A[2]-320*beta^2*k^2*s^2*B[1]-320*beta^2*k^2*s^2*B[2]+10*k^4*s^2*A[0]-10*k^4*s^2*A[1]-22*k^4*s^2*A[2]+22*k^4*s^2*B[1]+22*k^4*s^2*B[2]-25*k^4*w^2*A[0]+25*k^4*w^2*A[1]+55*k^4*w^2*A[2]-55*k^4*w^2*B[1]-55*k^4*w^2*B[2]-2240*beta*k^2*s*w*A[2]+640*beta*k^2*s*w*B[1]+640*beta*k^2*s*w*B[2]+1120*k^2*s^2*A[2]-320*k^2*s^2*B[1]-320*k^2*s^2*B[2]-9600*beta*s*w*A[1]-65920*beta*s*w*A[2]+14720*beta*s*w*B[1]+14720*beta*s*w*B[2]+9600*s^2*A[1]+65920*s^2*A[2]-14720*s^2*B[1]-14720*s^2*B[2]), 0 = (beta*s-w)*(25*beta*k^3*s*A[0]^3*c[2]+75*beta*k^3*s*A[0]^2*A[1]*c[2]-45*beta*k^3*s*A[0]^2*A[2]*c[2]-45*beta*k^3*s*A[0]^2*B[1]*c[2]-45*beta*k^3*s*A[0]^2*B[2]*c[2]-45*beta*k^3*s*A[0]*A[1]^2*c[2]-330*beta*k^3*s*A[0]*A[1]*A[2]*c[2]+150*beta*k^3*s*A[0]*A[1]*B[1]*c[2]+150*beta*k^3*s*A[0]*A[1]*B[2]*c[2]-45*beta*k^3*s*A[0]*A[2]^2*c[2]+150*beta*k^3*s*A[0]*A[2]*B[1]*c[2]+150*beta*k^3*s*A[0]*A[2]*B[2]*c[2]-165*beta*k^3*s*A[0]*B[1]^2*c[2]-330*beta*k^3*s*A[0]*B[1]*B[2]*c[2]-165*beta*k^3*s*A[0]*B[2]^2*c[2]-55*beta*k^3*s*A[1]^3*c[2]-45*beta*k^3*s*A[1]^2*A[2]*c[2]+75*beta*k^3*s*A[1]^2*B[1]*c[2]+75*beta*k^3*s*A[1]^2*B[2]*c[2]+675*beta*k^3*s*A[1]*A[2]^2*c[2]-90*beta*k^3*s*A[1]*A[2]*B[1]*c[2]-90*beta*k^3*s*A[1]*A[2]*B[2]*c[2]-45*beta*k^3*s*A[1]*B[1]^2*c[2]-90*beta*k^3*s*A[1]*B[1]*B[2]*c[2]-45*beta*k^3*s*A[1]*B[2]^2*c[2]+825*beta*k^3*s*A[2]^3*c[2]-165*beta*k^3*s*A[2]^2*B[1]*c[2]-165*beta*k^3*s*A[2]^2*B[2]*c[2]+75*beta*k^3*s*A[2]*B[1]^2*c[2]+150*beta*k^3*s*A[2]*B[1]*B[2]*c[2]+75*beta*k^3*s*A[2]*B[2]^2*c[2]-15*beta*k^3*s*B[1]^3*c[2]-45*beta*k^3*s*B[1]^2*B[2]*c[2]-45*beta*k^3*s*B[1]*B[2]^2*c[2]-15*beta*k^3*s*B[2]^3*c[2]-15*beta*k^4*s*w*A[0]-15*beta*k^4*s*w*A[1]+9*beta*k^4*s*w*A[2]+9*beta*k^4*s*w*B[1]+9*beta*k^4*s*w*B[2]-25*k^3*w*A[0]^3*c[2]-75*k^3*w*A[0]^2*A[1]*c[2]+45*k^3*w*A[0]^2*A[2]*c[2]+45*k^3*w*A[0]^2*B[1]*c[2]+45*k^3*w*A[0]^2*B[2]*c[2]+45*k^3*w*A[0]*A[1]^2*c[2]+330*k^3*w*A[0]*A[1]*A[2]*c[2]-150*k^3*w*A[0]*A[1]*B[1]*c[2]-150*k^3*w*A[0]*A[1]*B[2]*c[2]+45*k^3*w*A[0]*A[2]^2*c[2]-150*k^3*w*A[0]*A[2]*B[1]*c[2]-150*k^3*w*A[0]*A[2]*B[2]*c[2]+165*k^3*w*A[0]*B[1]^2*c[2]+330*k^3*w*A[0]*B[1]*B[2]*c[2]+165*k^3*w*A[0]*B[2]^2*c[2]+55*k^3*w*A[1]^3*c[2]+45*k^3*w*A[1]^2*A[2]*c[2]-75*k^3*w*A[1]^2*B[1]*c[2]-75*k^3*w*A[1]^2*B[2]*c[2]-675*k^3*w*A[1]*A[2]^2*c[2]+90*k^3*w*A[1]*A[2]*B[1]*c[2]+90*k^3*w*A[1]*A[2]*B[2]*c[2]+45*k^3*w*A[1]*B[1]^2*c[2]+90*k^3*w*A[1]*B[1]*B[2]*c[2]+45*k^3*w*A[1]*B[2]^2*c[2]-825*k^3*w*A[2]^3*c[2]+165*k^3*w*A[2]^2*B[1]*c[2]+165*k^3*w*A[2]^2*B[2]*c[2]-75*k^3*w*A[2]*B[1]^2*c[2]-150*k^3*w*A[2]*B[1]*B[2]*c[2]-75*k^3*w*A[2]*B[2]^2*c[2]+15*k^3*w*B[1]^3*c[2]+45*k^3*w*B[1]^2*B[2]*c[2]+45*k^3*w*B[1]*B[2]^2*c[2]+15*k^3*w*B[2]^3*c[2]+160*beta^2*k^2*s^2*A[1]-80*beta^2*k^2*s^2*A[2]-10*k^4*s^2*A[0]-10*k^4*s^2*A[1]+6*k^4*s^2*A[2]+6*k^4*s^2*B[1]+6*k^4*s^2*B[2]+25*k^4*w^2*A[0]+25*k^4*w^2*A[1]-15*k^4*w^2*A[2]-15*k^4*w^2*B[1]-15*k^4*w^2*B[2]-320*beta*k^2*s*w*A[1]+160*beta*k^2*s*w*A[2]+160*k^2*s^2*A[1]-80*k^2*s^2*A[2]+8000*beta*s*w*A[1]+100160*beta*s*w*A[2]+20160*beta*s*w*B[1]+20160*beta*s*w*B[2]-8000*s^2*A[1]-100160*s^2*A[2]-20160*s^2*B[1]-20160*s^2*B[2]), 0 = (beta*s-w)*(-25*beta*k^3*s*A[0]^3*c[2]+75*beta*k^3*s*A[0]^2*A[1]*c[2]+105*beta*k^3*s*A[0]^2*A[2]*c[2]-105*beta*k^3*s*A[0]^2*B[1]*c[2]-105*beta*k^3*s*A[0]^2*B[2]*c[2]+105*beta*k^3*s*A[0]*A[1]^2*c[2]-210*beta*k^3*s*A[0]*A[1]*A[2]*c[2]-150*beta*k^3*s*A[0]*A[1]*B[1]*c[2]-150*beta*k^3*s*A[0]*A[1]*B[2]*c[2]-315*beta*k^3*s*A[0]*A[2]^2*c[2]+150*beta*k^3*s*A[0]*A[2]*B[1]*c[2]+150*beta*k^3*s*A[0]*A[2]*B[2]*c[2]+105*beta*k^3*s*A[0]*B[1]^2*c[2]+210*beta*k^3*s*A[0]*B[1]*B[2]*c[2]+105*beta*k^3*s*A[0]*B[2]^2*c[2]-35*beta*k^3*s*A[1]^3*c[2]-315*beta*k^3*s*A[1]^2*A[2]*c[2]+75*beta*k^3*s*A[1]^2*B[1]*c[2]+75*beta*k^3*s*A[1]^2*B[2]*c[2]+315*beta*k^3*s*A[1]*A[2]^2*c[2]+210*beta*k^3*s*A[1]*A[2]*B[1]*c[2]+210*beta*k^3*s*A[1]*A[2]*B[2]*c[2]-105*beta*k^3*s*A[1]*B[1]^2*c[2]-210*beta*k^3*s*A[1]*B[1]*B[2]*c[2]-105*beta*k^3*s*A[1]*B[2]^2*c[2]+1155*beta*k^3*s*A[2]^3*c[2]-105*beta*k^3*s*A[2]^2*B[1]*c[2]-105*beta*k^3*s*A[2]^2*B[2]*c[2]-75*beta*k^3*s*A[2]*B[1]^2*c[2]-150*beta*k^3*s*A[2]*B[1]*B[2]*c[2]-75*beta*k^3*s*A[2]*B[2]^2*c[2]+105*beta*k^3*s*B[1]^3*c[2]+315*beta*k^3*s*B[1]^2*B[2]*c[2]+315*beta*k^3*s*B[1]*B[2]^2*c[2]+105*beta*k^3*s*B[2]^3*c[2]+15*beta*k^4*s*w*A[0]-15*beta*k^4*s*w*A[1]-21*beta*k^4*s*w*A[2]+21*beta*k^4*s*w*B[1]+21*beta*k^4*s*w*B[2]+25*k^3*w*A[0]^3*c[2]-75*k^3*w*A[0]^2*A[1]*c[2]-105*k^3*w*A[0]^2*A[2]*c[2]+105*k^3*w*A[0]^2*B[1]*c[2]+105*k^3*w*A[0]^2*B[2]*c[2]-105*k^3*w*A[0]*A[1]^2*c[2]+210*k^3*w*A[0]*A[1]*A[2]*c[2]+150*k^3*w*A[0]*A[1]*B[1]*c[2]+150*k^3*w*A[0]*A[1]*B[2]*c[2]+315*k^3*w*A[0]*A[2]^2*c[2]-150*k^3*w*A[0]*A[2]*B[1]*c[2]-150*k^3*w*A[0]*A[2]*B[2]*c[2]-105*k^3*w*A[0]*B[1]^2*c[2]-210*k^3*w*A[0]*B[1]*B[2]*c[2]-105*k^3*w*A[0]*B[2]^2*c[2]+35*k^3*w*A[1]^3*c[2]+315*k^3*w*A[1]^2*A[2]*c[2]-75*k^3*w*A[1]^2*B[1]*c[2]-75*k^3*w*A[1]^2*B[2]*c[2]-315*k^3*w*A[1]*A[2]^2*c[2]-210*k^3*w*A[1]*A[2]*B[1]*c[2]-210*k^3*w*A[1]*A[2]*B[2]*c[2]+105*k^3*w*A[1]*B[1]^2*c[2]+210*k^3*w*A[1]*B[1]*B[2]*c[2]+105*k^3*w*A[1]*B[2]^2*c[2]-1155*k^3*w*A[2]^3*c[2]+105*k^3*w*A[2]^2*B[1]*c[2]+105*k^3*w*A[2]^2*B[2]*c[2]+75*k^3*w*A[2]*B[1]^2*c[2]+150*k^3*w*A[2]*B[1]*B[2]*c[2]+75*k^3*w*A[2]*B[2]^2*c[2]-105*k^3*w*B[1]^3*c[2]-315*k^3*w*B[1]^2*B[2]*c[2]-315*k^3*w*B[1]*B[2]^2*c[2]-105*k^3*w*B[2]^3*c[2]+120*beta^2*k^2*s^2*A[1]+960*beta^2*k^2*s^2*A[2]-280*beta^2*k^2*s^2*B[1]-280*beta^2*k^2*s^2*B[2]+10*k^4*s^2*A[0]-10*k^4*s^2*A[1]-14*k^4*s^2*A[2]+14*k^4*s^2*B[1]+14*k^4*s^2*B[2]-25*k^4*w^2*A[0]+25*k^4*w^2*A[1]+35*k^4*w^2*A[2]-35*k^4*w^2*B[1]-35*k^4*w^2*B[2]-240*beta*k^2*s*w*A[1]-1920*beta*k^2*s*w*A[2]+560*beta*k^2*s*w*B[1]+560*beta*k^2*s*w*B[2]+120*k^2*s^2*A[1]+960*k^2*s^2*A[2]-280*k^2*s^2*B[1]-280*k^2*s^2*B[2]+4320*beta*s*w*A[1]+168960*beta*s*w*A[2]-32480*beta*s*w*B[1]-32480*beta*s*w*B[2]-4320*s^2*A[1]-168960*s^2*A[2]+32480*s^2*B[1]+32480*s^2*B[2]), 0 = (beta*s-w)*(25*beta*k^3*s*A[0]^3*c[2]+75*beta*k^3*s*A[0]^2*A[1]*c[2]-105*beta*k^3*s*A[0]^2*A[2]*c[2]-105*beta*k^3*s*A[0]^2*B[1]*c[2]-105*beta*k^3*s*A[0]^2*B[2]*c[2]-105*beta*k^3*s*A[0]*A[1]^2*c[2]-210*beta*k^3*s*A[0]*A[1]*A[2]*c[2]+150*beta*k^3*s*A[0]*A[1]*B[1]*c[2]+150*beta*k^3*s*A[0]*A[1]*B[2]*c[2]+315*beta*k^3*s*A[0]*A[2]^2*c[2]+150*beta*k^3*s*A[0]*A[2]*B[1]*c[2]+150*beta*k^3*s*A[0]*A[2]*B[2]*c[2]-105*beta*k^3*s*A[0]*B[1]^2*c[2]-210*beta*k^3*s*A[0]*B[1]*B[2]*c[2]-105*beta*k^3*s*A[0]*B[2]^2*c[2]-35*beta*k^3*s*A[1]^3*c[2]+315*beta*k^3*s*A[1]^2*A[2]*c[2]+75*beta*k^3*s*A[1]^2*B[1]*c[2]+75*beta*k^3*s*A[1]^2*B[2]*c[2]+315*beta*k^3*s*A[1]*A[2]^2*c[2]-210*beta*k^3*s*A[1]*A[2]*B[1]*c[2]-210*beta*k^3*s*A[1]*A[2]*B[2]*c[2]-105*beta*k^3*s*A[1]*B[1]^2*c[2]-210*beta*k^3*s*A[1]*B[1]*B[2]*c[2]-105*beta*k^3*s*A[1]*B[2]^2*c[2]-1155*beta*k^3*s*A[2]^3*c[2]-105*beta*k^3*s*A[2]^2*B[1]*c[2]-105*beta*k^3*s*A[2]^2*B[2]*c[2]+75*beta*k^3*s*A[2]*B[1]^2*c[2]+150*beta*k^3*s*A[2]*B[1]*B[2]*c[2]+75*beta*k^3*s*A[2]*B[2]^2*c[2]+105*beta*k^3*s*B[1]^3*c[2]+315*beta*k^3*s*B[1]^2*B[2]*c[2]+315*beta*k^3*s*B[1]*B[2]^2*c[2]+105*beta*k^3*s*B[2]^3*c[2]-15*beta*k^4*s*w*A[0]-15*beta*k^4*s*w*A[1]+21*beta*k^4*s*w*A[2]+21*beta*k^4*s*w*B[1]+21*beta*k^4*s*w*B[2]-25*k^3*w*A[0]^3*c[2]-75*k^3*w*A[0]^2*A[1]*c[2]+105*k^3*w*A[0]^2*A[2]*c[2]+105*k^3*w*A[0]^2*B[1]*c[2]+105*k^3*w*A[0]^2*B[2]*c[2]+105*k^3*w*A[0]*A[1]^2*c[2]+210*k^3*w*A[0]*A[1]*A[2]*c[2]-150*k^3*w*A[0]*A[1]*B[1]*c[2]-150*k^3*w*A[0]*A[1]*B[2]*c[2]-315*k^3*w*A[0]*A[2]^2*c[2]-150*k^3*w*A[0]*A[2]*B[1]*c[2]-150*k^3*w*A[0]*A[2]*B[2]*c[2]+105*k^3*w*A[0]*B[1]^2*c[2]+210*k^3*w*A[0]*B[1]*B[2]*c[2]+105*k^3*w*A[0]*B[2]^2*c[2]+35*k^3*w*A[1]^3*c[2]-315*k^3*w*A[1]^2*A[2]*c[2]-75*k^3*w*A[1]^2*B[1]*c[2]-75*k^3*w*A[1]^2*B[2]*c[2]-315*k^3*w*A[1]*A[2]^2*c[2]+210*k^3*w*A[1]*A[2]*B[1]*c[2]+210*k^3*w*A[1]*A[2]*B[2]*c[2]+105*k^3*w*A[1]*B[1]^2*c[2]+210*k^3*w*A[1]*B[1]*B[2]*c[2]+105*k^3*w*A[1]*B[2]^2*c[2]+1155*k^3*w*A[2]^3*c[2]+105*k^3*w*A[2]^2*B[1]*c[2]+105*k^3*w*A[2]^2*B[2]*c[2]-75*k^3*w*A[2]*B[1]^2*c[2]-150*k^3*w*A[2]*B[1]*B[2]*c[2]-75*k^3*w*A[2]*B[2]^2*c[2]-105*k^3*w*B[1]^3*c[2]-315*k^3*w*B[1]^2*B[2]*c[2]-315*k^3*w*B[1]*B[2]^2*c[2]-105*k^3*w*B[2]^3*c[2]+120*beta^2*k^2*s^2*A[1]-960*beta^2*k^2*s^2*A[2]-280*beta^2*k^2*s^2*B[1]-280*beta^2*k^2*s^2*B[2]-10*k^4*s^2*A[0]-10*k^4*s^2*A[1]+14*k^4*s^2*A[2]+14*k^4*s^2*B[1]+14*k^4*s^2*B[2]+25*k^4*w^2*A[0]+25*k^4*w^2*A[1]-35*k^4*w^2*A[2]-35*k^4*w^2*B[1]-35*k^4*w^2*B[2]-240*beta*k^2*s*w*A[1]+1920*beta*k^2*s*w*A[2]+560*beta*k^2*s*w*B[1]+560*beta*k^2*s*w*B[2]+120*k^2*s^2*A[1]-960*k^2*s^2*A[2]-280*k^2*s^2*B[1]-280*k^2*s^2*B[2]+4320*beta*s*w*A[1]-168960*beta*s*w*A[2]-32480*beta*s*w*B[1]-32480*beta*s*w*B[2]-4320*s^2*A[1]+168960*s^2*A[2]+32480*s^2*B[1]+32480*s^2*B[2]), 0 = (beta*s-w)*(-25*beta*k^3*s*A[0]^3*c[2]+75*beta*k^3*s*A[0]^2*A[1]*c[2]+45*beta*k^3*s*A[0]^2*A[2]*c[2]-45*beta*k^3*s*A[0]^2*B[1]*c[2]-45*beta*k^3*s*A[0]^2*B[2]*c[2]+45*beta*k^3*s*A[0]*A[1]^2*c[2]-330*beta*k^3*s*A[0]*A[1]*A[2]*c[2]-150*beta*k^3*s*A[0]*A[1]*B[1]*c[2]-150*beta*k^3*s*A[0]*A[1]*B[2]*c[2]+45*beta*k^3*s*A[0]*A[2]^2*c[2]+150*beta*k^3*s*A[0]*A[2]*B[1]*c[2]+150*beta*k^3*s*A[0]*A[2]*B[2]*c[2]+165*beta*k^3*s*A[0]*B[1]^2*c[2]+330*beta*k^3*s*A[0]*B[1]*B[2]*c[2]+165*beta*k^3*s*A[0]*B[2]^2*c[2]-55*beta*k^3*s*A[1]^3*c[2]+45*beta*k^3*s*A[1]^2*A[2]*c[2]+75*beta*k^3*s*A[1]^2*B[1]*c[2]+75*beta*k^3*s*A[1]^2*B[2]*c[2]+675*beta*k^3*s*A[1]*A[2]^2*c[2]+90*beta*k^3*s*A[1]*A[2]*B[1]*c[2]+90*beta*k^3*s*A[1]*A[2]*B[2]*c[2]-45*beta*k^3*s*A[1]*B[1]^2*c[2]-90*beta*k^3*s*A[1]*B[1]*B[2]*c[2]-45*beta*k^3*s*A[1]*B[2]^2*c[2]-825*beta*k^3*s*A[2]^3*c[2]-165*beta*k^3*s*A[2]^2*B[1]*c[2]-165*beta*k^3*s*A[2]^2*B[2]*c[2]-75*beta*k^3*s*A[2]*B[1]^2*c[2]-150*beta*k^3*s*A[2]*B[1]*B[2]*c[2]-75*beta*k^3*s*A[2]*B[2]^2*c[2]-15*beta*k^3*s*B[1]^3*c[2]-45*beta*k^3*s*B[1]^2*B[2]*c[2]-45*beta*k^3*s*B[1]*B[2]^2*c[2]-15*beta*k^3*s*B[2]^3*c[2]+15*beta*k^4*s*w*A[0]-15*beta*k^4*s*w*A[1]-9*beta*k^4*s*w*A[2]+9*beta*k^4*s*w*B[1]+9*beta*k^4*s*w*B[2]+25*k^3*w*A[0]^3*c[2]-75*k^3*w*A[0]^2*A[1]*c[2]-45*k^3*w*A[0]^2*A[2]*c[2]+45*k^3*w*A[0]^2*B[1]*c[2]+45*k^3*w*A[0]^2*B[2]*c[2]-45*k^3*w*A[0]*A[1]^2*c[2]+330*k^3*w*A[0]*A[1]*A[2]*c[2]+150*k^3*w*A[0]*A[1]*B[1]*c[2]+150*k^3*w*A[0]*A[1]*B[2]*c[2]-45*k^3*w*A[0]*A[2]^2*c[2]-150*k^3*w*A[0]*A[2]*B[1]*c[2]-150*k^3*w*A[0]*A[2]*B[2]*c[2]-165*k^3*w*A[0]*B[1]^2*c[2]-330*k^3*w*A[0]*B[1]*B[2]*c[2]-165*k^3*w*A[0]*B[2]^2*c[2]+55*k^3*w*A[1]^3*c[2]-45*k^3*w*A[1]^2*A[2]*c[2]-75*k^3*w*A[1]^2*B[1]*c[2]-75*k^3*w*A[1]^2*B[2]*c[2]-675*k^3*w*A[1]*A[2]^2*c[2]-90*k^3*w*A[1]*A[2]*B[1]*c[2]-90*k^3*w*A[1]*A[2]*B[2]*c[2]+45*k^3*w*A[1]*B[1]^2*c[2]+90*k^3*w*A[1]*B[1]*B[2]*c[2]+45*k^3*w*A[1]*B[2]^2*c[2]+825*k^3*w*A[2]^3*c[2]+165*k^3*w*A[2]^2*B[1]*c[2]+165*k^3*w*A[2]^2*B[2]*c[2]+75*k^3*w*A[2]*B[1]^2*c[2]+150*k^3*w*A[2]*B[1]*B[2]*c[2]+75*k^3*w*A[2]*B[2]^2*c[2]+15*k^3*w*B[1]^3*c[2]+45*k^3*w*B[1]^2*B[2]*c[2]+45*k^3*w*B[1]*B[2]^2*c[2]+15*k^3*w*B[2]^3*c[2]+160*beta^2*k^2*s^2*A[1]+80*beta^2*k^2*s^2*A[2]+10*k^4*s^2*A[0]-10*k^4*s^2*A[1]-6*k^4*s^2*A[2]+6*k^4*s^2*B[1]+6*k^4*s^2*B[2]-25*k^4*w^2*A[0]+25*k^4*w^2*A[1]+15*k^4*w^2*A[2]-15*k^4*w^2*B[1]-15*k^4*w^2*B[2]-320*beta*k^2*s*w*A[1]-160*beta*k^2*s*w*A[2]+160*k^2*s^2*A[1]+80*k^2*s^2*A[2]+8000*beta*s*w*A[1]-100160*beta*s*w*A[2]+20160*beta*s*w*B[1]+20160*beta*s*w*B[2]-8000*s^2*A[1]+100160*s^2*A[2]-20160*s^2*B[1]-20160*s^2*B[2]), 0 = (beta*s-w)*(-25*beta*k^3*s*A[0]^3*c[2]-75*beta*k^3*s*A[0]^2*A[1]*c[2]+165*beta*k^3*s*A[0]^2*A[2]*c[2]+165*beta*k^3*s*A[0]^2*B[1]*c[2]+165*beta*k^3*s*A[0]^2*B[2]*c[2]+165*beta*k^3*s*A[0]*A[1]^2*c[2]-150*beta*k^3*s*A[0]*A[1]*A[2]*c[2]-150*beta*k^3*s*A[0]*A[1]*B[1]*c[2]-150*beta*k^3*s*A[0]*A[1]*B[2]*c[2]-315*beta*k^3*s*A[0]*A[2]^2*c[2]-150*beta*k^3*s*A[0]*A[2]*B[1]*c[2]-150*beta*k^3*s*A[0]*A[2]*B[2]*c[2]-75*beta*k^3*s*A[0]*B[1]^2*c[2]-150*beta*k^3*s*A[0]*B[1]*B[2]*c[2]-75*beta*k^3*s*A[0]*B[2]^2*c[2]-25*beta*k^3*s*A[1]^3*c[2]-315*beta*k^3*s*A[1]^2*A[2]*c[2]-75*beta*k^3*s*A[1]^2*B[1]*c[2]-75*beta*k^3*s*A[1]^2*B[2]*c[2]+1125*beta*k^3*s*A[1]*A[2]^2*c[2]+330*beta*k^3*s*A[1]*A[2]*B[1]*c[2]+330*beta*k^3*s*A[1]*A[2]*B[2]*c[2]+165*beta*k^3*s*A[1]*B[1]^2*c[2]+330*beta*k^3*s*A[1]*B[1]*B[2]*c[2]+165*beta*k^3*s*A[1]*B[2]^2*c[2]-825*beta*k^3*s*A[2]^3*c[2]-75*beta*k^3*s*A[2]^2*B[1]*c[2]-75*beta*k^3*s*A[2]^2*B[2]*c[2]-75*beta*k^3*s*A[2]*B[1]^2*c[2]-150*beta*k^3*s*A[2]*B[1]*B[2]*c[2]-75*beta*k^3*s*A[2]*B[2]^2*c[2]-105*beta*k^3*s*B[1]^3*c[2]-315*beta*k^3*s*B[1]^2*B[2]*c[2]-315*beta*k^3*s*B[1]*B[2]^2*c[2]-105*beta*k^3*s*B[2]^3*c[2]+15*beta*k^4*s*w*A[0]+15*beta*k^4*s*w*A[1]-33*beta*k^4*s*w*A[2]-33*beta*k^4*s*w*B[1]-33*beta*k^4*s*w*B[2]+25*k^3*w*A[0]^3*c[2]+75*k^3*w*A[0]^2*A[1]*c[2]-165*k^3*w*A[0]^2*A[2]*c[2]-165*k^3*w*A[0]^2*B[1]*c[2]-165*k^3*w*A[0]^2*B[2]*c[2]-165*k^3*w*A[0]*A[1]^2*c[2]+150*k^3*w*A[0]*A[1]*A[2]*c[2]+150*k^3*w*A[0]*A[1]*B[1]*c[2]+150*k^3*w*A[0]*A[1]*B[2]*c[2]+315*k^3*w*A[0]*A[2]^2*c[2]+150*k^3*w*A[0]*A[2]*B[1]*c[2]+150*k^3*w*A[0]*A[2]*B[2]*c[2]+75*k^3*w*A[0]*B[1]^2*c[2]+150*k^3*w*A[0]*B[1]*B[2]*c[2]+75*k^3*w*A[0]*B[2]^2*c[2]+25*k^3*w*A[1]^3*c[2]+315*k^3*w*A[1]^2*A[2]*c[2]+75*k^3*w*A[1]^2*B[1]*c[2]+75*k^3*w*A[1]^2*B[2]*c[2]-1125*k^3*w*A[1]*A[2]^2*c[2]-330*k^3*w*A[1]*A[2]*B[1]*c[2]-330*k^3*w*A[1]*A[2]*B[2]*c[2]-165*k^3*w*A[1]*B[1]^2*c[2]-330*k^3*w*A[1]*B[1]*B[2]*c[2]-165*k^3*w*A[1]*B[2]^2*c[2]+825*k^3*w*A[2]^3*c[2]+75*k^3*w*A[2]^2*B[1]*c[2]+75*k^3*w*A[2]^2*B[2]*c[2]+75*k^3*w*A[2]*B[1]^2*c[2]+150*k^3*w*A[2]*B[1]*B[2]*c[2]+75*k^3*w*A[2]*B[2]^2*c[2]+105*k^3*w*B[1]^3*c[2]+315*k^3*w*B[1]^2*B[2]*c[2]+315*k^3*w*B[1]*B[2]^2*c[2]+105*k^3*w*B[2]^3*c[2]+1120*beta^2*k^2*s^2*A[2]+320*beta^2*k^2*s^2*B[1]+320*beta^2*k^2*s^2*B[2]+10*k^4*s^2*A[0]+10*k^4*s^2*A[1]-22*k^4*s^2*A[2]-22*k^4*s^2*B[1]-22*k^4*s^2*B[2]-25*k^4*w^2*A[0]-25*k^4*w^2*A[1]+55*k^4*w^2*A[2]+55*k^4*w^2*B[1]+55*k^4*w^2*B[2]-2240*beta*k^2*s*w*A[2]-640*beta*k^2*s*w*B[1]-640*beta*k^2*s*w*B[2]+1120*k^2*s^2*A[2]+320*k^2*s^2*B[1]+320*k^2*s^2*B[2]+9600*beta*s*w*A[1]-65920*beta*s*w*A[2]-14720*beta*s*w*B[1]-14720*beta*s*w*B[2]-9600*s^2*A[1]+65920*s^2*A[2]+14720*s^2*B[1]+14720*s^2*B[2]), 0 = (beta*s-w)*(-25*beta*k^3*s*A[0]^3*c[2]+75*beta*k^3*s*A[0]^2*A[1]*c[2]-15*beta*k^3*s*A[0]^2*A[2]*c[2]+15*beta*k^3*s*A[0]^2*B[1]*c[2]+15*beta*k^3*s*A[0]^2*B[2]*c[2]-15*beta*k^3*s*A[0]*A[1]^2*c[2]-210*beta*k^3*s*A[0]*A[1]*A[2]*c[2]-150*beta*k^3*s*A[0]*A[1]*B[1]*c[2]-150*beta*k^3*s*A[0]*A[1]*B[2]*c[2]+285*beta*k^3*s*A[0]*A[2]^2*c[2]+150*beta*k^3*s*A[0]*A[2]*B[1]*c[2]+150*beta*k^3*s*A[0]*A[2]*B[2]*c[2]+105*beta*k^3*s*A[0]*B[1]^2*c[2]+210*beta*k^3*s*A[0]*B[1]*B[2]*c[2]+105*beta*k^3*s*A[0]*B[2]^2*c[2]-35*beta*k^3*s*A[1]^3*c[2]+285*beta*k^3*s*A[1]^2*A[2]*c[2]+75*beta*k^3*s*A[1]^2*B[1]*c[2]+75*beta*k^3*s*A[1]^2*B[2]*c[2]-525*beta*k^3*s*A[1]*A[2]^2*c[2]-30*beta*k^3*s*A[1]*A[2]*B[1]*c[2]-30*beta*k^3*s*A[1]*A[2]*B[2]*c[2]+15*beta*k^3*s*A[1]*B[1]^2*c[2]+30*beta*k^3*s*A[1]*B[1]*B[2]*c[2]+15*beta*k^3*s*A[1]*B[2]^2*c[2]+275*beta*k^3*s*A[2]^3*c[2]-105*beta*k^3*s*A[2]^2*B[1]*c[2]-105*beta*k^3*s*A[2]^2*B[2]*c[2]-75*beta*k^3*s*A[2]*B[1]^2*c[2]-150*beta*k^3*s*A[2]*B[1]*B[2]*c[2]-75*beta*k^3*s*A[2]*B[2]^2*c[2]-95*beta*k^3*s*B[1]^3*c[2]-285*beta*k^3*s*B[1]^2*B[2]*c[2]-285*beta*k^3*s*B[1]*B[2]^2*c[2]-95*beta*k^3*s*B[2]^3*c[2]+15*beta*k^4*s*w*A[0]-15*beta*k^4*s*w*A[1]+3*beta*k^4*s*w*A[2]-3*beta*k^4*s*w*B[1]-3*beta*k^4*s*w*B[2]+25*k^3*w*A[0]^3*c[2]-75*k^3*w*A[0]^2*A[1]*c[2]+15*k^3*w*A[0]^2*A[2]*c[2]-15*k^3*w*A[0]^2*B[1]*c[2]-15*k^3*w*A[0]^2*B[2]*c[2]+15*k^3*w*A[0]*A[1]^2*c[2]+210*k^3*w*A[0]*A[1]*A[2]*c[2]+150*k^3*w*A[0]*A[1]*B[1]*c[2]+150*k^3*w*A[0]*A[1]*B[2]*c[2]-285*k^3*w*A[0]*A[2]^2*c[2]-150*k^3*w*A[0]*A[2]*B[1]*c[2]-150*k^3*w*A[0]*A[2]*B[2]*c[2]-105*k^3*w*A[0]*B[1]^2*c[2]-210*k^3*w*A[0]*B[1]*B[2]*c[2]-105*k^3*w*A[0]*B[2]^2*c[2]+35*k^3*w*A[1]^3*c[2]-285*k^3*w*A[1]^2*A[2]*c[2]-75*k^3*w*A[1]^2*B[1]*c[2]-75*k^3*w*A[1]^2*B[2]*c[2]+525*k^3*w*A[1]*A[2]^2*c[2]+30*k^3*w*A[1]*A[2]*B[1]*c[2]+30*k^3*w*A[1]*A[2]*B[2]*c[2]-15*k^3*w*A[1]*B[1]^2*c[2]-30*k^3*w*A[1]*B[1]*B[2]*c[2]-15*k^3*w*A[1]*B[2]^2*c[2]-275*k^3*w*A[2]^3*c[2]+105*k^3*w*A[2]^2*B[1]*c[2]+105*k^3*w*A[2]^2*B[2]*c[2]+75*k^3*w*A[2]*B[1]^2*c[2]+150*k^3*w*A[2]*B[1]*B[2]*c[2]+75*k^3*w*A[2]*B[2]^2*c[2]+95*k^3*w*B[1]^3*c[2]+285*k^3*w*B[1]^2*B[2]*c[2]+285*k^3*w*B[1]*B[2]^2*c[2]+95*k^3*w*B[2]^3*c[2]+120*beta^2*k^2*s^2*A[1]-560*beta^2*k^2*s^2*A[2]+200*beta^2*k^2*s^2*B[1]+200*beta^2*k^2*s^2*B[2]+10*k^4*s^2*A[0]-10*k^4*s^2*A[1]+2*k^4*s^2*A[2]-2*k^4*s^2*B[1]-2*k^4*s^2*B[2]-25*k^4*w^2*A[0]+25*k^4*w^2*A[1]-5*k^4*w^2*A[2]+5*k^4*w^2*B[1]+5*k^4*w^2*B[2]-240*beta*k^2*s*w*A[1]+1120*beta*k^2*s*w*A[2]-400*beta*k^2*s*w*B[1]-400*beta*k^2*s*w*B[2]+120*k^2*s^2*A[1]-560*k^2*s^2*A[2]+200*k^2*s^2*B[1]+200*k^2*s^2*B[2]-2400*beta*s*w*A[1]+9920*beta*s*w*A[2]-2720*beta*s*w*B[1]-2720*beta*s*w*B[2]+2400*s^2*A[1]-9920*s^2*A[2]+2720*s^2*B[1]+2720*s^2*B[2]), 0 = (beta*s-w)*(-5*beta*k^3*s*A[0]^3*c[2]-15*beta*k^3*s*A[0]^2*A[1]*c[2]+45*beta*k^3*s*A[0]^2*A[2]*c[2]+45*beta*k^3*s*A[0]^2*B[1]*c[2]+45*beta*k^3*s*A[0]^2*B[2]*c[2]+45*beta*k^3*s*A[0]*A[1]^2*c[2]-150*beta*k^3*s*A[0]*A[1]*A[2]*c[2]-30*beta*k^3*s*A[0]*A[1]*B[1]*c[2]-30*beta*k^3*s*A[0]*A[1]*B[2]*c[2]+105*beta*k^3*s*A[0]*A[2]^2*c[2]-30*beta*k^3*s*A[0]*A[2]*B[1]*c[2]-30*beta*k^3*s*A[0]*A[2]*B[2]*c[2]-75*beta*k^3*s*A[0]*B[1]^2*c[2]-150*beta*k^3*s*A[0]*B[1]*B[2]*c[2]-75*beta*k^3*s*A[0]*B[2]^2*c[2]-25*beta*k^3*s*A[1]^3*c[2]+105*beta*k^3*s*A[1]^2*A[2]*c[2]-15*beta*k^3*s*A[1]^2*B[1]*c[2]-15*beta*k^3*s*A[1]^2*B[2]*c[2]-135*beta*k^3*s*A[1]*A[2]^2*c[2]+90*beta*k^3*s*A[1]*A[2]*B[1]*c[2]+90*beta*k^3*s*A[1]*A[2]*B[2]*c[2]+45*beta*k^3*s*A[1]*B[1]^2*c[2]+90*beta*k^3*s*A[1]*B[1]*B[2]*c[2]+45*beta*k^3*s*A[1]*B[2]^2*c[2]+55*beta*k^3*s*A[2]^3*c[2]-75*beta*k^3*s*A[2]^2*B[1]*c[2]-75*beta*k^3*s*A[2]^2*B[2]*c[2]-15*beta*k^3*s*A[2]*B[1]^2*c[2]-30*beta*k^3*s*A[2]*B[1]*B[2]*c[2]-15*beta*k^3*s*A[2]*B[2]^2*c[2]+35*beta*k^3*s*B[1]^3*c[2]+105*beta*k^3*s*B[1]^2*B[2]*c[2]+105*beta*k^3*s*B[1]*B[2]^2*c[2]+35*beta*k^3*s*B[2]^3*c[2]+3*beta*k^4*s*w*A[0]+3*beta*k^4*s*w*A[1]-9*beta*k^4*s*w*A[2]-9*beta*k^4*s*w*B[1]-9*beta*k^4*s*w*B[2]+5*k^3*w*A[0]^3*c[2]+15*k^3*w*A[0]^2*A[1]*c[2]-45*k^3*w*A[0]^2*A[2]*c[2]-45*k^3*w*A[0]^2*B[1]*c[2]-45*k^3*w*A[0]^2*B[2]*c[2]-45*k^3*w*A[0]*A[1]^2*c[2]+150*k^3*w*A[0]*A[1]*A[2]*c[2]+30*k^3*w*A[0]*A[1]*B[1]*c[2]+30*k^3*w*A[0]*A[1]*B[2]*c[2]-105*k^3*w*A[0]*A[2]^2*c[2]+30*k^3*w*A[0]*A[2]*B[1]*c[2]+30*k^3*w*A[0]*A[2]*B[2]*c[2]+75*k^3*w*A[0]*B[1]^2*c[2]+150*k^3*w*A[0]*B[1]*B[2]*c[2]+75*k^3*w*A[0]*B[2]^2*c[2]+25*k^3*w*A[1]^3*c[2]-105*k^3*w*A[1]^2*A[2]*c[2]+15*k^3*w*A[1]^2*B[1]*c[2]+15*k^3*w*A[1]^2*B[2]*c[2]+135*k^3*w*A[1]*A[2]^2*c[2]-90*k^3*w*A[1]*A[2]*B[1]*c[2]-90*k^3*w*A[1]*A[2]*B[2]*c[2]-45*k^3*w*A[1]*B[1]^2*c[2]-90*k^3*w*A[1]*B[1]*B[2]*c[2]-45*k^3*w*A[1]*B[2]^2*c[2]-55*k^3*w*A[2]^3*c[2]+75*k^3*w*A[2]^2*B[1]*c[2]+75*k^3*w*A[2]^2*B[2]*c[2]+15*k^3*w*A[2]*B[1]^2*c[2]+30*k^3*w*A[2]*B[1]*B[2]*c[2]+15*k^3*w*A[2]*B[2]^2*c[2]-35*k^3*w*B[1]^3*c[2]-105*k^3*w*B[1]^2*B[2]*c[2]-105*k^3*w*B[1]*B[2]^2*c[2]-35*k^3*w*B[2]^3*c[2]+40*beta^2*k^2*s^2*A[1]-80*beta^2*k^2*s^2*A[2]-40*beta^2*k^2*s^2*B[1]-40*beta^2*k^2*s^2*B[2]+2*k^4*s^2*A[0]+2*k^4*s^2*A[1]-6*k^4*s^2*A[2]-6*k^4*s^2*B[1]-6*k^4*s^2*B[2]-5*k^4*w^2*A[0]-5*k^4*w^2*A[1]+15*k^4*w^2*A[2]+15*k^4*w^2*B[1]+15*k^4*w^2*B[2]-80*beta*k^2*s*w*A[1]+160*beta*k^2*s*w*A[2]+80*beta*k^2*s*w*B[1]+80*beta*k^2*s*w*B[2]+40*k^2*s^2*A[1]-80*k^2*s^2*A[2]-40*k^2*s^2*B[1]-40*k^2*s^2*B[2]-160*beta*s*w*A[1]+320*beta*s*w*A[2]+160*beta*s*w*B[1]+160*beta*s*w*B[2]+160*s^2*A[1]-320*s^2*A[2]-160*s^2*B[1]-160*s^2*B[2]), 0 = k^3*(beta*s-w)*(A[0]-A[1]+A[2]-B[1]-B[2])*(-5*beta*s*A[0]^2*c[2]+10*beta*s*A[0]*A[1]*c[2]-10*beta*s*A[0]*A[2]*c[2]+10*beta*s*A[0]*B[1]*c[2]+10*beta*s*A[0]*B[2]*c[2]-5*beta*s*A[1]^2*c[2]+10*beta*s*A[1]*A[2]*c[2]-10*beta*s*A[1]*B[1]*c[2]-10*beta*s*A[1]*B[2]*c[2]-5*beta*s*A[2]^2*c[2]+10*beta*s*A[2]*B[1]*c[2]+10*beta*s*A[2]*B[2]*c[2]-5*beta*s*B[1]^2*c[2]-10*beta*s*B[1]*B[2]*c[2]-5*beta*s*B[2]^2*c[2]+3*beta*k*s*w+5*w*A[0]^2*c[2]-10*w*A[0]*A[1]*c[2]+10*w*A[0]*A[2]*c[2]-10*w*A[0]*B[1]*c[2]-10*w*A[0]*B[2]*c[2]+5*w*A[1]^2*c[2]-10*w*A[1]*A[2]*c[2]+10*w*A[1]*B[1]*c[2]+10*w*A[1]*B[2]*c[2]+5*w*A[2]^2*c[2]-10*w*A[2]*B[1]*c[2]-10*w*A[2]*B[2]*c[2]+5*w*B[1]^2*c[2]+10*w*B[1]*B[2]*c[2]+5*w*B[2]^2*c[2]+2*k*s^2-5*k*w^2)]

indets(CoefficientNullity)

{beta, k, s, w, A[0], A[1], A[2], B[1], B[2], c[2]}

(2)

sols := solve(CoefficientNullity, [beta, k, s, w, A[0], A[1], A[2], B[1], B[2], c[2]]); sols := `assuming`([eval(sols)], [b > 0]); whattype(sols); print(cat(`$`('_', 120))); `~`[print](sols)

[[beta = beta, k = 0, s = 0, w = w, A[0] = A[0], A[1] = A[1], A[2] = A[2], B[1] = B[1], B[2] = B[2], c[2] = c[2]], [beta = beta, k = 0, s = s, w = w, A[0] = A[0], A[1] = 0, A[2] = 0, B[1] = -B[2], B[2] = B[2], c[2] = c[2]], [beta = w/s, k = 0, s = s, w = w, A[0] = A[0], A[1] = A[1], A[2] = A[2], B[1] = B[1], B[2] = B[2], c[2] = c[2]], [beta = beta, k = 0, s = beta*w, w = w, A[0] = A[0], A[1] = A[1], A[2] = A[2], B[1] = B[1], B[2] = B[2], c[2] = c[2]]]

 

list

 

________________________________________________________________________________________________________________________

 

[beta = beta, k = 0, s = 0, w = w, A[0] = A[0], A[1] = A[1], A[2] = A[2], B[1] = B[1], B[2] = B[2], c[2] = c[2]]

 

[beta = beta, k = 0, s = s, w = w, A[0] = A[0], A[1] = 0, A[2] = 0, B[1] = -B[2], B[2] = B[2], c[2] = c[2]]

 

[beta = w/s, k = 0, s = s, w = w, A[0] = A[0], A[1] = A[1], A[2] = A[2], B[1] = B[1], B[2] = B[2], c[2] = c[2]]

 

[beta = beta, k = 0, s = beta*w, w = w, A[0] = A[0], A[1] = A[1], A[2] = A[2], B[1] = B[1], B[2] = B[2], c[2] = c[2]]

(3)

Download params.mw

is it possible to ask Maple to verify ode solution obtained from book, which is given in parametric form to check if it is correct?

I know odetest supports both explicit and implicit solutions. But parametric solution is neither of these.

The solution in parametric form makes it look simple to look at and understand, but at same time, not practical in terms of obtaining an explicit solution to verify it and to use it.

The book "handbook of exact solution for ordinary differential equations" by Polyanin and Zaitsev have many such solutions.

Here is one such example of many

I can not just give odetest the y(x) solution above, because the right side depends on tau, which is parameter. If I try to solve for tau in terms of x from the first equation it will become so complicated and odetest hangs. So a whole new different approach is needed as brute force method is not practical in most cases.

restart;

ode:=y(x)*diff(y(x),x)-y(x)=A*x+B;
book_sol:=y(x)=_C1*t*exp( - Int( t/(t^2-t-A),t));
eq:=x=_C1*exp(  - Int( t/(t^2-t-A),t))-B/A;

y(x)*(diff(y(x), x))-y(x) = A*x+B

y(x) = _C1*t*exp(-(Int(t/(t^2-A-t), t)))

x = _C1*exp(-(Int(t/(t^2-A-t), t)))-B/A

value(eq):
solve(%,t):
simplify(eval(book_sol,t=%));

y(x) = _C1*exp(-RootOf(4*A*exp(2*_Z)-4*cosh((ln((A*x+B)/(A*_C1))-_Z)*(4*A+1)^(1/2))^2+exp(2*_Z))+Intat(_a/(-_a^2+A+_a), _a = RootOf(-A*exp(2*RootOf(4*A*exp(2*_Z)-4*cosh((ln((A*x+B)/(A*_C1))-_Z)*(4*A+1)^(1/2))^2+exp(2*_Z)))+_Z^2-exp(RootOf(4*A*exp(2*_Z)-4*cosh((ln((A*x+B)/(A*_C1))-_Z)*(4*A+1)^(1/2))^2+exp(2*_Z)))*_Z+1)*exp(-RootOf(4*A*exp(2*_Z)-4*cosh((ln((A*x+B)/(A*_C1))-_Z)*(4*A+1)^(1/2))^2+exp(2*_Z)))))*RootOf(-A*exp(2*RootOf(4*A*exp(2*_Z)-4*cosh((ln((A*x+B)/(A*_C1))-_Z)*(4*A+1)^(1/2))^2+exp(2*_Z)))+_Z^2-exp(RootOf(4*A*exp(2*_Z)-4*cosh((ln((A*x+B)/(A*_C1))-_Z)*(4*A+1)^(1/2))^2+exp(2*_Z)))*_Z+1)

odetest(%,ode); #hangs

Download how_to_verify_parametric_solution_to_ode.mw

Some more examples from the book where solutions are given only in parametrric form

update

inspired by solution below by @acer, I found if I just use Solve on the x equation, in order to find t as function of x, and use that in the y equation, it will automatically return solution using RootOf.

Hence no need to explicitly evaluate the integral or explicity set up the RootOf manually.

Now odetest work. 

restart;

ode:=y(x)*diff(y(x),x)-y(x)=A*x+B;
book_sol:=y(x)=_C1*t*exp( - Int( t/(t^2-t-A),t));
eq:=x=_C1*exp(  - Int( t/(t^2-t-A),t))-B/A;

y(x)*(diff(y(x), x))-y(x) = A*x+B

y(x) = _C1*t*exp(-(Int(t/(t^2-A-t), t)))

x = _C1*exp(-(Int(t/(t^2-A-t), t)))-B/A

PDEtools:-Solve(eq,t);

t = RootOf(c__1*exp(Intat(_a/(-_a^2+A+_a), _a = _Z))*A-A*x-B)

simplify(eval(book_sol,%));

y(x) = RootOf(c__1*exp(Intat(_a/(-_a^2+A+_a), _a = _Z))*A-A*x-B)*(A*x+B)/A

odetest(%,ode);

0

#compare to Maple's
simplify(dsolve(ode,useInt));

y(x) = -RootOf(-Intat(_a/(-_a^2+A-_a), _a = _Z)+Intat(1/_a, _a = A*x+B)+c__1)*(A*x+B)/A

odetest(%,ode);

0

 

 

Download how_to_verify_parametric_solution_to_ode_V2.mw

i seperate my equation of real part and imaginary part i want  after taking integrale from my real part we see the pattern betwen real and imaginary part  which they equal about variable beside coefficient , i want to determine and find parameter from real part of my equation then substitute in imaginary for solving but  the number of condition i don't know is how much and there is a little bit repeatation how i can determine the correct one and then substitute ?

restart

with(PDEtools)

undeclare(prime, quiet)

declare(u(x, t), quiet); declare(U(xi), quiet); declare(V(xi), quiet)

pde := I*(diff(u(x, t), `$`(t, 2))-s^2*(diff(u(x, t), `$`(x, 2))))+(1/24)*c[1]*(diff(u(x, t), t, `$`(x, 4)))-alpha*s*c[1]*(diff(u(x, t), `$`(x, 5)))+diff(c[2]*u(x, t)*U(-t*v+x)^2, t)-beta*s*(diff(c[2]*u(x, t)*U(-t*v+x)^2, x))

I*(diff(diff(u(x, t), t), t)-s^2*(diff(diff(u(x, t), x), x)))+(1/24)*c[1]*(diff(diff(diff(diff(diff(u(x, t), t), x), x), x), x))-alpha*s*c[1]*(diff(diff(diff(diff(diff(u(x, t), x), x), x), x), x))+c[2]*(diff(u(x, t), t))*U(-t*v+x)^2-2*c[2]*u(x, t)*U(-t*v+x)*(D(U))(-t*v+x)*v-beta*s*(c[2]*(diff(u(x, t), x))*U(-t*v+x)^2+2*c[2]*u(x, t)*U(-t*v+x)*(D(U))(-t*v+x))

(1)

G1 := U(-t*v+x) = U(xi); G2 := (D(U))(-t*v+x) = diff(U(xi), xi); G3 := ((D@@2)(U))(-t*v+x) = diff(U(xi), `$`(xi, 2)); G4 := ((D@@3)(U))(-t*v+x) = diff(U(xi), `$`(xi, 3)); G5 := ((D@@4)(U))(-t*v+x) = diff(U(xi), `$`(xi, 4)); G6 := ((D@@5)(U))(-t*v+x) = diff(U(xi), `$`(xi, 5))

T := xi = -t*v+x; T1 := u(x, t) = U(-t*v+x)*exp(I*k*(t*w+x))

xi = -t*v+x

 

u(x, t) = U(-t*v+x)*exp(I*k*(t*w+x))

(2)

P1 := I*(diff(u(x, t), `$`(t, 2))-s^2*(diff(u(x, t), `$`(x, 2))))+(1/24)*c[1]*(diff(u(x, t), t, `$`(x, 4)))-alpha*s*c[1]*(diff(u(x, t), `$`(x, 5)))+diff(c[2]*u(x, t)*U(-t*v+x)^2, t)-beta*s*(diff(c[2]*u(x, t)*U(-t*v+x)^2, x))

I*(diff(diff(u(x, t), t), t)-s^2*(diff(diff(u(x, t), x), x)))+(1/24)*c[1]*(diff(diff(diff(diff(diff(u(x, t), t), x), x), x), x))-alpha*s*c[1]*(diff(diff(diff(diff(diff(u(x, t), x), x), x), x), x))+c[2]*(diff(u(x, t), t))*U(-t*v+x)^2-2*c[2]*u(x, t)*U(-t*v+x)*(D(U))(-t*v+x)*v-beta*s*(c[2]*(diff(u(x, t), x))*U(-t*v+x)^2+2*c[2]*u(x, t)*U(-t*v+x)*(D(U))(-t*v+x))

(3)

P11 := eval(P1, {T, T1})

I*(((D@@2)(U))(-t*v+x)*v^2*exp(I*k*(t*w+x))-(2*I)*(D(U))(-t*v+x)*v*k*w*exp(I*k*(t*w+x))-U(-t*v+x)*k^2*w^2*exp(I*k*(t*w+x))-s^2*(((D@@2)(U))(-t*v+x)*exp(I*k*(t*w+x))+(2*I)*(D(U))(-t*v+x)*k*exp(I*k*(t*w+x))-U(-t*v+x)*k^2*exp(I*k*(t*w+x))))+(1/24)*c[1]*(-((D@@5)(U))(-t*v+x)*v*exp(I*k*(t*w+x))+(4*I)*((D@@2)(U))(-t*v+x)*v*k^3*exp(I*k*(t*w+x))+I*U(-t*v+x)*k^5*w*exp(I*k*(t*w+x))+6*((D@@3)(U))(-t*v+x)*v*k^2*exp(I*k*(t*w+x))-(4*I)*((D@@4)(U))(-t*v+x)*v*k*exp(I*k*(t*w+x))-(6*I)*((D@@2)(U))(-t*v+x)*k^3*w*exp(I*k*(t*w+x))-(D(U))(-t*v+x)*v*k^4*exp(I*k*(t*w+x))+I*((D@@4)(U))(-t*v+x)*k*w*exp(I*k*(t*w+x))-4*((D@@3)(U))(-t*v+x)*k^2*w*exp(I*k*(t*w+x))+4*(D(U))(-t*v+x)*k^4*w*exp(I*k*(t*w+x)))-alpha*s*c[1]*(((D@@5)(U))(-t*v+x)*exp(I*k*(t*w+x))+(5*I)*((D@@4)(U))(-t*v+x)*k*exp(I*k*(t*w+x))-10*((D@@3)(U))(-t*v+x)*k^2*exp(I*k*(t*w+x))-(10*I)*((D@@2)(U))(-t*v+x)*k^3*exp(I*k*(t*w+x))+5*(D(U))(-t*v+x)*k^4*exp(I*k*(t*w+x))+I*U(-t*v+x)*k^5*exp(I*k*(t*w+x)))+c[2]*(-(D(U))(-t*v+x)*v*exp(I*k*(t*w+x))+I*U(-t*v+x)*k*w*exp(I*k*(t*w+x)))*U(-t*v+x)^2-2*c[2]*U(-t*v+x)^2*exp(I*k*(t*w+x))*(D(U))(-t*v+x)*v-beta*s*(c[2]*((D(U))(-t*v+x)*exp(I*k*(t*w+x))+I*U(-t*v+x)*k*exp(I*k*(t*w+x)))*U(-t*v+x)^2+2*c[2]*U(-t*v+x)^2*exp(I*k*(t*w+x))*(D(U))(-t*v+x))

(4)

P111 := subs({G1, G2, G3, G4, G5, G6}, P11)

I*((diff(diff(U(xi), xi), xi))*v^2*exp(I*k*(t*w+x))-(2*I)*(diff(U(xi), xi))*v*k*w*exp(I*k*(t*w+x))-U(xi)*k^2*w^2*exp(I*k*(t*w+x))-s^2*((diff(diff(U(xi), xi), xi))*exp(I*k*(t*w+x))+(2*I)*(diff(U(xi), xi))*k*exp(I*k*(t*w+x))-U(xi)*k^2*exp(I*k*(t*w+x))))+(1/24)*c[1]*(-(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*v*exp(I*k*(t*w+x))+(4*I)*(diff(diff(U(xi), xi), xi))*v*k^3*exp(I*k*(t*w+x))+I*U(xi)*k^5*w*exp(I*k*(t*w+x))+6*(diff(diff(diff(U(xi), xi), xi), xi))*v*k^2*exp(I*k*(t*w+x))-(4*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*v*k*exp(I*k*(t*w+x))-(6*I)*(diff(diff(U(xi), xi), xi))*k^3*w*exp(I*k*(t*w+x))-(diff(U(xi), xi))*v*k^4*exp(I*k*(t*w+x))+I*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k*w*exp(I*k*(t*w+x))-4*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*w*exp(I*k*(t*w+x))+4*(diff(U(xi), xi))*k^4*w*exp(I*k*(t*w+x)))-alpha*s*c[1]*((diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*exp(I*k*(t*w+x))+(5*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k*exp(I*k*(t*w+x))-10*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*exp(I*k*(t*w+x))-(10*I)*(diff(diff(U(xi), xi), xi))*k^3*exp(I*k*(t*w+x))+5*(diff(U(xi), xi))*k^4*exp(I*k*(t*w+x))+I*U(xi)*k^5*exp(I*k*(t*w+x)))+c[2]*(-(diff(U(xi), xi))*v*exp(I*k*(t*w+x))+I*U(xi)*k*w*exp(I*k*(t*w+x)))*U(xi)^2-2*c[2]*U(xi)^2*exp(I*k*(t*w+x))*(diff(U(xi), xi))*v-beta*s*(c[2]*((diff(U(xi), xi))*exp(I*k*(t*w+x))+I*U(xi)*k*exp(I*k*(t*w+x)))*U(xi)^2+2*c[2]*U(xi)^2*exp(I*k*(t*w+x))*(diff(U(xi), xi)))

(5)

pde1 := P111 = 0

I*((diff(diff(U(xi), xi), xi))*v^2*exp(I*k*(t*w+x))-(2*I)*(diff(U(xi), xi))*v*k*w*exp(I*k*(t*w+x))-U(xi)*k^2*w^2*exp(I*k*(t*w+x))-s^2*((diff(diff(U(xi), xi), xi))*exp(I*k*(t*w+x))+(2*I)*(diff(U(xi), xi))*k*exp(I*k*(t*w+x))-U(xi)*k^2*exp(I*k*(t*w+x))))+(1/24)*c[1]*(-(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*v*exp(I*k*(t*w+x))+(4*I)*(diff(diff(U(xi), xi), xi))*v*k^3*exp(I*k*(t*w+x))+I*U(xi)*k^5*w*exp(I*k*(t*w+x))+6*(diff(diff(diff(U(xi), xi), xi), xi))*v*k^2*exp(I*k*(t*w+x))-(4*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*v*k*exp(I*k*(t*w+x))-(6*I)*(diff(diff(U(xi), xi), xi))*k^3*w*exp(I*k*(t*w+x))-(diff(U(xi), xi))*v*k^4*exp(I*k*(t*w+x))+I*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k*w*exp(I*k*(t*w+x))-4*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*w*exp(I*k*(t*w+x))+4*(diff(U(xi), xi))*k^4*w*exp(I*k*(t*w+x)))-alpha*s*c[1]*((diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*exp(I*k*(t*w+x))+(5*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k*exp(I*k*(t*w+x))-10*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*exp(I*k*(t*w+x))-(10*I)*(diff(diff(U(xi), xi), xi))*k^3*exp(I*k*(t*w+x))+5*(diff(U(xi), xi))*k^4*exp(I*k*(t*w+x))+I*U(xi)*k^5*exp(I*k*(t*w+x)))+c[2]*(-(diff(U(xi), xi))*v*exp(I*k*(t*w+x))+I*U(xi)*k*w*exp(I*k*(t*w+x)))*U(xi)^2-2*c[2]*U(xi)^2*exp(I*k*(t*w+x))*(diff(U(xi), xi))*v-beta*s*(c[2]*((diff(U(xi), xi))*exp(I*k*(t*w+x))+I*U(xi)*k*exp(I*k*(t*w+x)))*U(xi)^2+2*c[2]*U(xi)^2*exp(I*k*(t*w+x))*(diff(U(xi), xi))) = 0

(6)

numer(lhs(pde1))*denom(rhs(pde1)) = numer(rhs(pde1))*denom(lhs(pde1))

-exp(I*k*(t*w+x))*((diff(U(xi), xi))*k^4*v*c[1]-4*(diff(U(xi), xi))*k^4*w*c[1]-48*(diff(U(xi), xi))*k*v*w+72*c[2]*U(xi)^2*(diff(U(xi), xi))*v-6*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*v*c[1]+4*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*w*c[1]+24*(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*alpha*s*c[1]-(24*I)*U(xi)*k^2*s^2+(24*I)*U(xi)*k^2*w^2+(24*I)*U(xi)*alpha*k^5*s*c[1]-(240*I)*(diff(diff(U(xi), xi), xi))*alpha*k^3*s*c[1]+(24*I)*U(xi)^3*beta*k*s*c[2]+(120*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*alpha*k*s*c[1]+120*(diff(U(xi), xi))*alpha*k^4*s*c[1]+72*(diff(U(xi), xi))*U(xi)^2*beta*s*c[2]-240*(diff(diff(diff(U(xi), xi), xi), xi))*alpha*k^2*s*c[1]-I*U(xi)*k^5*w*c[1]-(4*I)*(diff(diff(U(xi), xi), xi))*k^3*v*c[1]+(6*I)*(diff(diff(U(xi), xi), xi))*k^3*w*c[1]-(24*I)*U(xi)^3*k*w*c[2]+(4*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k*v*c[1]-I*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k*w*c[1]-48*(diff(U(xi), xi))*k*s^2+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*v*c[1]+(24*I)*(diff(diff(U(xi), xi), xi))*s^2-(24*I)*(diff(diff(U(xi), xi), xi))*v^2) = 0

(7)

%/(-exp(I*k*(t*w+x)))

(diff(U(xi), xi))*k^4*v*c[1]-4*(diff(U(xi), xi))*k^4*w*c[1]-48*(diff(U(xi), xi))*k*v*w+72*c[2]*U(xi)^2*(diff(U(xi), xi))*v-6*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*v*c[1]+4*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*w*c[1]+24*(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*alpha*s*c[1]-(24*I)*U(xi)*k^2*s^2+(24*I)*U(xi)*k^2*w^2+(24*I)*U(xi)*alpha*k^5*s*c[1]-(240*I)*(diff(diff(U(xi), xi), xi))*alpha*k^3*s*c[1]+(24*I)*U(xi)^3*beta*k*s*c[2]+(120*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*alpha*k*s*c[1]+120*(diff(U(xi), xi))*alpha*k^4*s*c[1]+72*(diff(U(xi), xi))*U(xi)^2*beta*s*c[2]-240*(diff(diff(diff(U(xi), xi), xi), xi))*alpha*k^2*s*c[1]-I*U(xi)*k^5*w*c[1]-(4*I)*(diff(diff(U(xi), xi), xi))*k^3*v*c[1]+(6*I)*(diff(diff(U(xi), xi), xi))*k^3*w*c[1]-(24*I)*U(xi)^3*k*w*c[2]+(4*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k*v*c[1]-I*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k*w*c[1]-48*(diff(U(xi), xi))*k*s^2+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*v*c[1]+(24*I)*(diff(diff(U(xi), xi), xi))*s^2-(24*I)*(diff(diff(U(xi), xi), xi))*v^2 = 0

(8)

Re(%)

Re((diff(U(xi), xi))*k^4*v*c[1]-4*(diff(U(xi), xi))*k^4*w*c[1]-48*(diff(U(xi), xi))*k*v*w+72*c[2]*U(xi)^2*(diff(U(xi), xi))*v-6*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*v*c[1]+4*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*w*c[1]+24*(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*alpha*s*c[1]+120*(diff(U(xi), xi))*alpha*k^4*s*c[1]+72*(diff(U(xi), xi))*U(xi)^2*beta*s*c[2]-240*(diff(diff(diff(U(xi), xi), xi), xi))*alpha*k^2*s*c[1]-48*(diff(U(xi), xi))*k*s^2+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*v*c[1])-Im(-24*U(xi)*k^2*s^2+24*U(xi)*k^2*w^2+24*U(xi)*alpha*k^5*s*c[1]-240*(diff(diff(U(xi), xi), xi))*alpha*k^3*s*c[1]+24*U(xi)^3*beta*k*s*c[2]+120*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*alpha*k*s*c[1]-U(xi)*k^5*w*c[1]-4*(diff(diff(U(xi), xi), xi))*k^3*v*c[1]+6*(diff(diff(U(xi), xi), xi))*k^3*w*c[1]-24*U(xi)^3*k*w*c[2]+4*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k*v*c[1]-(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k*w*c[1]+24*(diff(diff(U(xi), xi), xi))*s^2-24*(diff(diff(U(xi), xi), xi))*v^2) = 0

(9)

R := (diff(U(xi), xi))*k^4*v*c[1]-4*(diff(U(xi), xi))*k^4*w*c[1]-48*(diff(U(xi), xi))*k*v*w+72*c[2]*U(xi)^2*(diff(U(xi), xi))*v-6*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*v*c[1]+4*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*w*c[1]+24*(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*alpha*s*c[1]+120*(diff(U(xi), xi))*alpha*k^4*s*c[1]+72*(diff(U(xi), xi))*U(xi)^2*beta*s*c[2]-240*(diff(diff(diff(U(xi), xi), xi), xi))*alpha*k^2*s*c[1]-48*(diff(U(xi), xi))*k*s^2+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*v*c[1] = 0

(diff(U(xi), xi))*k^4*v*c[1]-4*(diff(U(xi), xi))*k^4*w*c[1]-48*(diff(U(xi), xi))*k*v*w+72*c[2]*U(xi)^2*(diff(U(xi), xi))*v-6*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*v*c[1]+4*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*w*c[1]+24*(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*alpha*s*c[1]+120*(diff(U(xi), xi))*alpha*k^4*s*c[1]+72*(diff(U(xi), xi))*U(xi)^2*beta*s*c[2]-240*(diff(diff(diff(U(xi), xi), xi), xi))*alpha*k^2*s*c[1]-48*(diff(U(xi), xi))*k*s^2+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*v*c[1] = 0

(10)

collect(R, {U(xi), diff(U(xi), xi), diff(U(xi), `$`(xi, 3)), diff(diff(U(xi), xi), xi), diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi)})

(72*beta*s*c[2]+72*v*c[2])*(diff(U(xi), xi))*U(xi)^2+(120*alpha*k^4*s*c[1]+k^4*v*c[1]-4*k^4*w*c[1]-48*k*s^2-48*k*v*w)*(diff(U(xi), xi))+(-240*alpha*k^2*s*c[1]-6*k^2*v*c[1]+4*k^2*w*c[1])*(diff(diff(diff(U(xi), xi), xi), xi))+(24*alpha*s*c[1]+v*c[1])*(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi)) = 0

(11)

map(int, (72*beta*s*c[2]+72*v*c[2])*(diff(U(xi), xi))*U(xi)^2+(120*alpha*k^4*s*c[1]+k^4*v*c[1]-4*k^4*w*c[1]-48*k*s^2-48*k*v*w)*(diff(U(xi), xi))+(-240*alpha*k^2*s*c[1]-6*k^2*v*c[1]+4*k^2*w*c[1])*(diff(diff(diff(U(xi), xi), xi), xi))+(24*alpha*s*c[1]+v*c[1])*(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi)) = 0, xi)

(24*alpha*s*c[1]+v*c[1])*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))+(-240*alpha*k^2*s*c[1]-6*k^2*v*c[1]+4*k^2*w*c[1])*(diff(diff(U(xi), xi), xi))+(120*alpha*k^4*s*c[1]+k^4*v*c[1]-4*k^4*w*c[1]-48*k*s^2-48*k*v*w)*U(xi)+(1/3)*(72*beta*s*c[2]+72*v*c[2])*U(xi)^3 = 0

(12)

numer(lhs((24*alpha*s*c[1]+v*c[1])*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))+(-240*alpha*k^2*s*c[1]-6*k^2*v*c[1]+4*k^2*w*c[1])*(diff(diff(U(xi), xi), xi))+(120*alpha*k^4*s*c[1]+k^4*v*c[1]-4*k^4*w*c[1]-48*k*s^2-48*k*v*w)*U(xi)+(1/3)*(72*beta*s*c[2]+72*v*c[2])*U(xi)^3 = 0))*denom(rhs((24*alpha*s*c[1]+v*c[1])*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))+(-240*alpha*k^2*s*c[1]-6*k^2*v*c[1]+4*k^2*w*c[1])*(diff(diff(U(xi), xi), xi))+(120*alpha*k^4*s*c[1]+k^4*v*c[1]-4*k^4*w*c[1]-48*k*s^2-48*k*v*w)*U(xi)+(1/3)*(72*beta*s*c[2]+72*v*c[2])*U(xi)^3 = 0)) = numer(rhs((24*alpha*s*c[1]+v*c[1])*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))+(-240*alpha*k^2*s*c[1]-6*k^2*v*c[1]+4*k^2*w*c[1])*(diff(diff(U(xi), xi), xi))+(120*alpha*k^4*s*c[1]+k^4*v*c[1]-4*k^4*w*c[1]-48*k*s^2-48*k*v*w)*U(xi)+(1/3)*(72*beta*s*c[2]+72*v*c[2])*U(xi)^3 = 0))*denom(lhs((24*alpha*s*c[1]+v*c[1])*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))+(-240*alpha*k^2*s*c[1]-6*k^2*v*c[1]+4*k^2*w*c[1])*(diff(diff(U(xi), xi), xi))+(120*alpha*k^4*s*c[1]+k^4*v*c[1]-4*k^4*w*c[1]-48*k*s^2-48*k*v*w)*U(xi)+(1/3)*(72*beta*s*c[2]+72*v*c[2])*U(xi)^3 = 0))

120*U(xi)*alpha*k^4*s*c[1]+U(xi)*k^4*v*c[1]-4*U(xi)*k^4*w*c[1]-240*(diff(diff(U(xi), xi), xi))*alpha*k^2*s*c[1]+24*U(xi)^3*beta*s*c[2]-6*(diff(diff(U(xi), xi), xi))*k^2*v*c[1]+4*(diff(diff(U(xi), xi), xi))*k^2*w*c[1]+24*U(xi)^3*v*c[2]+24*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*alpha*s*c[1]-48*U(xi)*k*s^2-48*U(xi)*k*v*w+(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*v*c[1] = 0

(13)

RR := collect(%, {U(xi), diff(U(xi), xi), diff(U(xi), `$`(xi, 3)), diff(diff(U(xi), xi), xi), diff(diff(diff(diff(U(xi), xi), xi), xi), xi), diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi)})

(24*beta*s*c[2]+24*v*c[2])*U(xi)^3+(120*alpha*k^4*s*c[1]+k^4*v*c[1]-4*k^4*w*c[1]-48*k*s^2-48*k*v*w)*U(xi)+(-240*alpha*k^2*s*c[1]-6*k^2*v*c[1]+4*k^2*w*c[1])*(diff(diff(U(xi), xi), xi))+(24*alpha*s*c[1]+v*c[1])*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi)) = 0

(14)

IM := 24*U(xi)*k^2*s^2-24*U(xi)*k^2*w^2-24*U(xi)*alpha*k^5*s*c[1]+240*(diff(diff(U(xi), xi), xi))*alpha*k^3*s*c[1]-24*U(xi)^3*beta*k*s*c[2]-120*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*alpha*k*s*c[1]+U(xi)*k^5*w*c[1]+4*(diff(diff(U(xi), xi), xi))*k^3*v*c[1]-6*(diff(diff(U(xi), xi), xi))*k^3*w*c[1]+24*U(xi)^3*k*w*c[2]-4*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k*v*c[1]+(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k*w*c[1]-24*(diff(diff(U(xi), xi), xi))*s^2+24*(diff(diff(U(xi), xi), xi))*v^2 = 0

collect(IM, {U(xi), diff(U(xi), xi), diff(U(xi), `$`(xi, 3)), diff(diff(U(xi), xi), xi), diff(diff(diff(diff(U(xi), xi), xi), xi), xi), diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi)})

P := %

(-24*beta*k*s*c[2]+24*k*w*c[2])*U(xi)^3+(-24*alpha*k^5*s*c[1]+k^5*w*c[1]+24*k^2*s^2-24*k^2*w^2)*U(xi)+(240*alpha*k^3*s*c[1]+4*k^3*v*c[1]-6*k^3*w*c[1]-24*s^2+24*v^2)*(diff(diff(U(xi), xi), xi))+(-120*alpha*k*s*c[1]-4*k*v*c[1]+k*w*c[1])*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi)) = 0

(15)

NULL

NULL

C1 := v = solve(24*beta*s*c[2]+24*v*c[2] = 0, v)

v = -beta*s

(16)

C2 := w = solve(120*alpha*k^4*s*c[1]+k^4*v*c[1]-4*k^4*w*c[1]-48*k*s^2-48*k*v*w = 0, w)

w = (1/4)*(120*alpha*k^3*s*c[1]+k^3*v*c[1]-48*s^2)/(k^3*c[1]+12*v)

(17)

C3 := alpha = solve(-240*alpha*k^2*s*c[1]-6*k^2*v*c[1]+4*k^2*w*c[1] = 0, alpha)

alpha = -(1/120)*(3*v-2*w)/s

(18)

ode1 := subs({C1, C2, C3}, P)

(-24*beta*k*s*c[2]+6*k*(120*alpha*k^3*s*c[1]+k^3*v*c[1]-48*s^2)*c[2]/(k^3*c[1]+12*v))*U(xi)^3+((1/5)*(3*v-2*w)*k^5*c[1]+(1/4)*k^5*(120*alpha*k^3*s*c[1]+k^3*v*c[1]-48*s^2)*c[1]/(k^3*c[1]+12*v)+24*k^2*s^2-(3/2)*k^2*(120*alpha*k^3*s*c[1]+k^3*v*c[1]-48*s^2)^2/(k^3*c[1]+12*v)^2)*U(xi)+(-2*(3*v-2*w)*k^3*c[1]-4*k^3*beta*s*c[1]-(3/2)*k^3*(120*alpha*k^3*s*c[1]+k^3*v*c[1]-48*s^2)*c[1]/(k^3*c[1]+12*v)-24*s^2+24*beta^2*s^2)*(diff(diff(U(xi), xi), xi))+((3*v-2*w)*k*c[1]+4*k*beta*s*c[1]+(1/4)*k*(120*alpha*k^3*s*c[1]+k^3*v*c[1]-48*s^2)*c[1]/(k^3*c[1]+12*v))*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi)) = 0

(19)

Download F-condition_and_replacing.mw

I am not sure how to use dsolve for my problem.
CQ_v1.mw

Hi everyone, I am trying to plot graphs for dp/dx versus x from my ordinary differential equation numerically. My file is working, but the outcome is straight lines, which means I am doing something wrong. Could anyone  please have a look on my file.

Help-dpdx.mw

the expected  results should be  look like this

Is there a trick to make Maple simplify 

to

I can't use the exp() trick given in earlier questions, since there is no exp here. Below are my attempts. Can someone find another smart trick to do this simplification? Should simplify() have simplified it as is with no assumptions or using tricks? This is all done in code, so solutions can not depend on "looking on screen" and deciding what to do for each step.

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

restart;

interface(rtablesize=30);

[10, 10]

A:=-(sqrt(3)*sqrt(-2*C1 - 2*x) - 3)/(3*sqrt(-2*C1 - 2*x)*x);

-(1/3)*(3^(1/2)*(-2*C1-2*x)^(1/2)-3)/((-2*C1-2*x)^(1/2)*x)

B:=-(1/(sqrt(3)*x)) + 1/(sqrt(2)*x*sqrt(-x - C1));

-(1/3)*3^(1/2)/x+(1/2)*2^(1/2)/(x*(-x-C1)^(1/2))

simplify(A-B);

0

MmaTranslator:-Mma:-LeafCount(A);
MmaTranslator:-Mma:-LeafCount(B);

29

26

full_simplify:=proc(e::anything,assum::anything)
   local result::list;

   #add more methods as needed

   result:=[(simplify(e) assuming assum),
            (simplify(e,size=false) assuming assum),
            (simplify(e,size) assuming assum),
            (simplify(e,sqrt) assuming assum),
            (simplify(combine(e)) assuming assum),
            (simplify(combine(e),size) assuming assum),
            (radnormal(evala( combine(e) )) assuming assum),
            (simplify(evala( combine(e) )) assuming assum),
            (evala(radnormal( combine(e) )) assuming assum),
            (simplify(radnormal( combine(e) )) assuming assum),
            (evala(factor(e)) assuming assum),
            (simplify(e,ln) assuming assum),
            (simplify(e,power) assuming assum),
            (simplify(e,RootOf) assuming assum),
            (simplify(e,sqrt) assuming assum),
            (simplify(e,trig) assuming assum),
            (simplify(convert(e,trig)) assuming assum),
            (simplify(convert(e,exp)) assuming assum),
            (combine(e) assuming assum)
   ];   
   RETURN( result )

end proc:

Vector(full_simplify(A,real))

Vector(19, {(1) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (2) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (3) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (4) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (5) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (6) = -(1/3)*(sqrt(-6*C1-6*x)-3)/(sqrt(-2*C1-2*x)*x), (7) = (1/6)*sqrt(-2*C1-2*x)*(sqrt(-6*C1-6*x)-3)/((C1+x)*x), (8) = (1/6)*sqrt(-2*C1-2*x)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/((C1+x)*x), (9) = (1/6)*sqrt(-2*C1-2*x)*(sqrt(-6*C1-6*x)-3)/((C1+x)*x), (10) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (11) = -(1/6)*(2*sqrt(3)*C1+2*sqrt(3)*x+3*sqrt(-2*C1-2*x))/((C1+x)*x), (12) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (13) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (14) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (15) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (16) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (17) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (18) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (19) = -(1/3)*(sqrt(-6*C1-6*x)-3)/(sqrt(-2*C1-2*x)*x)})

Vector(full_simplify(A,positive))

Vector(19, {(1) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (2) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (3) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (4) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (5) = (1/3)*(-sqrt(3)*sqrt(2*C1+2*x)-3*I)/(sqrt(2*C1+2*x)*x), (6) = -(1/3)*(I*sqrt(6*C1+6*x)-3)/(sqrt(-2*C1-2*x)*x), (7) = (1/6)*sqrt(-2*C1-2*x)*(I*sqrt(6*C1+6*x)-3)/((C1+x)*x), (8) = -(1/6)*sqrt(2*C1+2*x)*(sqrt(3)*sqrt(2*C1+2*x)+3*I)/((C1+x)*x), (9) = (1/6)*sqrt(-2*C1-2*x)*(I*sqrt(6*C1+6*x)-3)/((C1+x)*x), (10) = (1/3)*(-sqrt(3)*sqrt(2*C1+2*x)-3*I)/(sqrt(2*C1+2*x)*x), (11) = -(1/6)*(2*sqrt(3)*C1+2*sqrt(3)*x+3*sqrt(-2*C1-2*x))/((C1+x)*x), (12) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (13) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (14) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (15) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (16) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (17) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (18) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (19) = -(1/3)*(I*sqrt(6*C1+6*x)-3)/(sqrt(-2*C1-2*x)*x)})

 

 

Download simplification_may_8_2025.mw

For reference, using another software

I'm trying to extract the real and imaginary parts of a given PDE. However, during the substitution step, something unexpected occurs. Specifically, my replacement does not yield the expected result, and an extra term appears: D(k)(t*w + x) in the expression P11. I'm unsure why this term arises and would appreciate any insight into what might be going wrong during the substitution process.

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, t)); declare(U(xi)); declare(V(xi))

u(x, t)*`will now be displayed as`*u

 

U(xi)*`will now be displayed as`*U

 

V(xi)*`will now be displayed as`*V

(2)

pde := I*(diff(u(x, t), `$`(t, 2))-s^2*(diff(u(x, t), `$`(x, 2))))+(1/24)*c[1]*(diff(u(x, t), t, `$`(x, 4)))-alpha*s*c[1]*(diff(u(x, t), `$`(x, 5)))+diff(c[2]*u(x, t)*U(-t*v+x)^2+c[3]*u(x, t)*U(-t*v+x)^4+c[4]*u(x, t)*(diff(U(-t*v+x)^2, `$`(x, 2))), t)-beta*s*(diff(u(x, t), `$`(x, 5)))+diff(c[2]*u(x, t)*U(-t*v+x)^2+c[3]*u(x, t)*U(-t*v+x)^4+c[4]*u(x, t)*(diff(U(-t*v+x)^2, `$`(x, 2))), x)

I*(diff(diff(u(x, t), t), t)-s^2*(diff(diff(u(x, t), x), x)))+(1/24)*c[1]*(diff(diff(diff(diff(diff(u(x, t), t), x), x), x), x))-alpha*s*c[1]*(diff(diff(diff(diff(diff(u(x, t), x), x), x), x), x))+c[2]*(diff(u(x, t), t))*U(-t*v+x)^2-2*c[2]*u(x, t)*U(-t*v+x)*(D(U))(-t*v+x)*v+c[3]*(diff(u(x, t), t))*U(-t*v+x)^4-4*c[3]*u(x, t)*U(-t*v+x)^3*(D(U))(-t*v+x)*v+c[4]*(diff(u(x, t), t))*(2*(D(U))(-t*v+x)^2+2*U(-t*v+x)*((D@@2)(U))(-t*v+x))+c[4]*u(x, t)*(-6*(D(U))(-t*v+x)*((D@@2)(U))(-t*v+x)*v-2*U(-t*v+x)*((D@@3)(U))(-t*v+x)*v)-beta*s*(diff(diff(diff(diff(diff(u(x, t), x), x), x), x), x))+c[2]*(diff(u(x, t), x))*U(-t*v+x)^2+2*c[2]*u(x, t)*U(-t*v+x)*(D(U))(-t*v+x)+c[3]*(diff(u(x, t), x))*U(-t*v+x)^4+4*c[3]*u(x, t)*U(-t*v+x)^3*(D(U))(-t*v+x)+c[4]*(diff(u(x, t), x))*(2*(D(U))(-t*v+x)^2+2*U(-t*v+x)*((D@@2)(U))(-t*v+x))+c[4]*u(x, t)*(6*(D(U))(-t*v+x)*((D@@2)(U))(-t*v+x)+2*U(-t*v+x)*((D@@3)(U))(-t*v+x))

(3)

``

G1 := U(-t*v+x) = U(xi); G2 := (D(U))(-t*v+x) = diff(U(xi), xi); G3 := ((D@@2)(U))(-t*v+x) = diff(U(xi), `$`(xi, 2)); G4 := ((D@@3)(U))(-t*v+x) = diff(U(xi), `$`(xi, 3)); G5 := ((D@@4)(U))(-t*v+x) = diff(U(xi), `$`(xi, 4)); G6 := ((D@@5)(U))(-t*v+x) = diff(U(xi), `$`(xi, 5))

U(-t*v+x) = U(xi)

 

(D(U))(-t*v+x) = diff(U(xi), xi)

 

((D@@2)(U))(-t*v+x) = diff(diff(U(xi), xi), xi)

 

((D@@3)(U))(-t*v+x) = diff(diff(diff(U(xi), xi), xi), xi)

 

((D@@4)(U))(-t*v+x) = diff(diff(diff(diff(U(xi), xi), xi), xi), xi)

 

((D@@5)(U))(-t*v+x) = diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi)

(4)

NULL

T := xi = -t*v+x; T1 := u(x, t) = U(-t*v+x)*exp(I*k(t*w+x))

xi = -t*v+x

 

u(x, t) = U(-t*v+x)*exp(I*k(t*w+x))

(5)

P1 := I*(diff(u(x, t), `$`(t, 2))-s^2*(diff(u(x, t), `$`(x, 2))))+(1/24)*c[1]*(diff(u(x, t), t, `$`(x, 4)))-alpha*s*c[1]*(diff(u(x, t), `$`(x, 5)))+diff(c[2]*u(x, t)*U(-t*v+x)^2+c[3]*u(x, t)*U(-t*v+x)^4+c[4]*u(x, t)*(diff(U(-t*v+x)^2, `$`(x, 2))), t)-beta*s*(diff(u(x, t), `$`(x, 5)))+diff(c[2]*u(x, t)*U(-t*v+x)^2+c[3]*u(x, t)*U(-t*v+x)^4+c[4]*u(x, t)*(diff(U(-t*v+x)^2, `$`(x, 2))), x)

I*(diff(diff(u(x, t), t), t)-s^2*(diff(diff(u(x, t), x), x)))+(1/24)*c[1]*(diff(diff(diff(diff(diff(u(x, t), t), x), x), x), x))-alpha*s*c[1]*(diff(diff(diff(diff(diff(u(x, t), x), x), x), x), x))+c[2]*(diff(u(x, t), t))*U(-t*v+x)^2-2*c[2]*u(x, t)*U(-t*v+x)*(D(U))(-t*v+x)*v+c[3]*(diff(u(x, t), t))*U(-t*v+x)^4-4*c[3]*u(x, t)*U(-t*v+x)^3*(D(U))(-t*v+x)*v+c[4]*(diff(u(x, t), t))*(2*(D(U))(-t*v+x)^2+2*U(-t*v+x)*((D@@2)(U))(-t*v+x))+c[4]*u(x, t)*(-6*(D(U))(-t*v+x)*((D@@2)(U))(-t*v+x)*v-2*U(-t*v+x)*((D@@3)(U))(-t*v+x)*v)-beta*s*(diff(diff(diff(diff(diff(u(x, t), x), x), x), x), x))+c[2]*(diff(u(x, t), x))*U(-t*v+x)^2+2*c[2]*u(x, t)*U(-t*v+x)*(D(U))(-t*v+x)+c[3]*(diff(u(x, t), x))*U(-t*v+x)^4+4*c[3]*u(x, t)*U(-t*v+x)^3*(D(U))(-t*v+x)+c[4]*(diff(u(x, t), x))*(2*(D(U))(-t*v+x)^2+2*U(-t*v+x)*((D@@2)(U))(-t*v+x))+c[4]*u(x, t)*(6*(D(U))(-t*v+x)*((D@@2)(U))(-t*v+x)+2*U(-t*v+x)*((D@@3)(U))(-t*v+x))

(6)

P11 := eval(P1, {T, T1})

I*(((D@@2)(U))(-t*v+x)*v^2*exp(I*k(t*w+x))-(2*I)*(D(U))(-t*v+x)*v*(D(k))(t*w+x)*w*exp(I*k(t*w+x))+I*U(-t*v+x)*((D@@2)(k))(t*w+x)*w^2*exp(I*k(t*w+x))-U(-t*v+x)*(D(k))(t*w+x)^2*w^2*exp(I*k(t*w+x))-s^2*(((D@@2)(U))(-t*v+x)*exp(I*k(t*w+x))+(2*I)*(D(U))(-t*v+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))+I*U(-t*v+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-U(-t*v+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))))+(1/24)*c[1]*(6*((D@@3)(U))(-t*v+x)*v*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-4*((D@@3)(U))(-t*v+x)*(D(k))(t*w+x)^2*w*exp(I*k(t*w+x))+4*(D(U))(-t*v+x)*(D(k))(t*w+x)^4*w*exp(I*k(t*w+x))-(D(U))(-t*v+x)*v*(D(k))(t*w+x)^4*exp(I*k(t*w+x))+I*U(-t*v+x)*(D(k))(t*w+x)^5*w*exp(I*k(t*w+x))-(24*I)*(D(U))(-t*v+x)*(D(k))(t*w+x)^2*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-(10*I)*U(-t*v+x)*((D@@3)(k))(t*w+x)*w*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(15*I)*U(-t*v+x)*((D@@2)(k))(t*w+x)^2*w*(D(k))(t*w+x)*exp(I*k(t*w+x))+(6*I)*(D(U))(-t*v+x)*v*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+12*((D@@2)(U))(-t*v+x)*v*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-18*((D@@2)(U))(-t*v+x)*(D(k))(t*w+x)*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+10*U(-t*v+x)*(D(k))(t*w+x)^3*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+I*((D@@4)(U))(-t*v+x)*(D(k))(t*w+x)*w*exp(I*k(t*w+x))-16*(D(U))(-t*v+x)*((D@@3)(k))(t*w+x)*w*(D(k))(t*w+x)*exp(I*k(t*w+x))-12*(D(U))(-t*v+x)*((D@@2)(k))(t*w+x)^2*w*exp(I*k(t*w+x))-5*U(-t*v+x)*((D@@4)(k))(t*w+x)*w*(D(k))(t*w+x)*exp(I*k(t*w+x))-10*U(-t*v+x)*((D@@3)(k))(t*w+x)*w*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(-t*v+x)*((D@@5)(k))(t*w+x)*w*exp(I*k(t*w+x))-I*(D(U))(-t*v+x)*v*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))+3*(D(U))(-t*v+x)*v*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+(4*I)*((D@@3)(U))(-t*v+x)*((D@@2)(k))(t*w+x)*w*exp(I*k(t*w+x))-(6*I)*((D@@2)(U))(-t*v+x)*(D(k))(t*w+x)^3*w*exp(I*k(t*w+x))-(6*I)*((D@@3)(U))(-t*v+x)*v*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-(4*I)*((D@@2)(U))(-t*v+x)*v*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))+(6*I)*((D@@2)(U))(-t*v+x)*((D@@3)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(D(U))(-t*v+x)*((D@@4)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*((D@@2)(U))(-t*v+x)*v*(D(k))(t*w+x)^3*exp(I*k(t*w+x))-(4*I)*((D@@4)(U))(-t*v+x)*v*(D(k))(t*w+x)*exp(I*k(t*w+x))+4*(D(U))(-t*v+x)*v*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-((D@@5)(U))(-t*v+x)*v*exp(I*k(t*w+x)))-alpha*s*c[1]*(I*U(-t*v+x)*((D@@5)(k))(t*w+x)*exp(I*k(t*w+x))+(10*I)*((D@@2)(U))(-t*v+x)*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))-(10*I)*((D@@2)(U))(-t*v+x)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))-(30*I)*(D(U))(-t*v+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*((D@@4)(U))(-t*v+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-10*U(-t*v+x)*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-15*(D(U))(-t*v+x)*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+10*U(-t*v+x)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*(D(U))(-t*v+x)*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))-5*U(-t*v+x)*((D@@4)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-20*(D(U))(-t*v+x)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-30*((D@@2)(U))(-t*v+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-(10*I)*U(-t*v+x)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(15*I)*U(-t*v+x)*((D@@2)(k))(t*w+x)^2*(D(k))(t*w+x)*exp(I*k(t*w+x))+I*U(-t*v+x)*(D(k))(t*w+x)^5*exp(I*k(t*w+x))+(10*I)*((D@@3)(U))(-t*v+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))+((D@@5)(U))(-t*v+x)*exp(I*k(t*w+x))+5*(D(U))(-t*v+x)*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*((D@@3)(U))(-t*v+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x)))+c[2]*(-(D(U))(-t*v+x)*v*exp(I*k(t*w+x))+I*U(-t*v+x)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*U(-t*v+x)^2-2*c[2]*U(-t*v+x)^2*exp(I*k(t*w+x))*(D(U))(-t*v+x)*v+c[3]*(-(D(U))(-t*v+x)*v*exp(I*k(t*w+x))+I*U(-t*v+x)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*U(-t*v+x)^4-4*c[3]*U(-t*v+x)^4*exp(I*k(t*w+x))*(D(U))(-t*v+x)*v+c[4]*(-(D(U))(-t*v+x)*v*exp(I*k(t*w+x))+I*U(-t*v+x)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*(2*(D(U))(-t*v+x)^2+2*U(-t*v+x)*((D@@2)(U))(-t*v+x))+c[4]*U(-t*v+x)*exp(I*k(t*w+x))*(-6*(D(U))(-t*v+x)*((D@@2)(U))(-t*v+x)*v-2*U(-t*v+x)*((D@@3)(U))(-t*v+x)*v)-beta*s*(I*U(-t*v+x)*((D@@5)(k))(t*w+x)*exp(I*k(t*w+x))+(10*I)*((D@@2)(U))(-t*v+x)*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))-(10*I)*((D@@2)(U))(-t*v+x)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))-(30*I)*(D(U))(-t*v+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*((D@@4)(U))(-t*v+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-10*U(-t*v+x)*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-15*(D(U))(-t*v+x)*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+10*U(-t*v+x)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*(D(U))(-t*v+x)*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))-5*U(-t*v+x)*((D@@4)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-20*(D(U))(-t*v+x)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-30*((D@@2)(U))(-t*v+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-(10*I)*U(-t*v+x)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(15*I)*U(-t*v+x)*((D@@2)(k))(t*w+x)^2*(D(k))(t*w+x)*exp(I*k(t*w+x))+I*U(-t*v+x)*(D(k))(t*w+x)^5*exp(I*k(t*w+x))+(10*I)*((D@@3)(U))(-t*v+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))+((D@@5)(U))(-t*v+x)*exp(I*k(t*w+x))+5*(D(U))(-t*v+x)*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*((D@@3)(U))(-t*v+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x)))+c[2]*((D(U))(-t*v+x)*exp(I*k(t*w+x))+I*U(-t*v+x)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*U(-t*v+x)^2+2*c[2]*U(-t*v+x)^2*exp(I*k(t*w+x))*(D(U))(-t*v+x)+c[3]*((D(U))(-t*v+x)*exp(I*k(t*w+x))+I*U(-t*v+x)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*U(-t*v+x)^4+4*c[3]*U(-t*v+x)^4*exp(I*k(t*w+x))*(D(U))(-t*v+x)+c[4]*((D(U))(-t*v+x)*exp(I*k(t*w+x))+I*U(-t*v+x)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*(2*(D(U))(-t*v+x)^2+2*U(-t*v+x)*((D@@2)(U))(-t*v+x))+c[4]*U(-t*v+x)*exp(I*k(t*w+x))*(6*(D(U))(-t*v+x)*((D@@2)(U))(-t*v+x)+2*U(-t*v+x)*((D@@3)(U))(-t*v+x))

(7)

P111 := subs({G1, G2, G3, G4, G5, G6}, P11)NULL

I*((diff(diff(U(xi), xi), xi))*v^2*exp(I*k(t*w+x))-(2*I)*(diff(U(xi), xi))*v*(D(k))(t*w+x)*w*exp(I*k(t*w+x))+I*U(xi)*((D@@2)(k))(t*w+x)*w^2*exp(I*k(t*w+x))-U(xi)*(D(k))(t*w+x)^2*w^2*exp(I*k(t*w+x))-s^2*((diff(diff(U(xi), xi), xi))*exp(I*k(t*w+x))+(2*I)*(diff(U(xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-U(xi)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))))+(1/24)*c[1]*(6*(diff(diff(diff(U(xi), xi), xi), xi))*v*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-4*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*w*exp(I*k(t*w+x))+4*(diff(U(xi), xi))*(D(k))(t*w+x)^4*w*exp(I*k(t*w+x))-(diff(U(xi), xi))*v*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-12*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*w*exp(I*k(t*w+x))+3*(diff(U(xi), xi))*v*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*w*exp(I*k(t*w+x))+12*(diff(diff(U(xi), xi), xi))*v*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-18*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+10*U(xi)*(D(k))(t*w+x)^3*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+I*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*w*exp(I*k(t*w+x))-16*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*w*(D(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*w*(D(k))(t*w+x)*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*w*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*w*exp(I*k(t*w+x))-I*(diff(U(xi), xi))*v*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))+(4*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*w*exp(I*k(t*w+x))-(6*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*w*exp(I*k(t*w+x))-(6*I)*(diff(diff(diff(U(xi), xi), xi), xi))*v*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-(4*I)*(diff(diff(U(xi), xi), xi))*v*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))+(6*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(diff(U(xi), xi), xi))*v*(D(k))(t*w+x)^3*exp(I*k(t*w+x))-(4*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*v*(D(k))(t*w+x)*exp(I*k(t*w+x))+4*(diff(U(xi), xi))*v*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*v*exp(I*k(t*w+x))-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*w*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*w*(D(k))(t*w+x)*exp(I*k(t*w+x))+(6*I)*(diff(U(xi), xi))*v*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-(24*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x))-alpha*s*c[1]*(-(30*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*exp(I*k(t*w+x))+(10*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-15*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+10*U(xi)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(10*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-20*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-30*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-(10*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+(5*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*(D(k))(t*w+x)*exp(I*k(t*w+x))+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*exp(I*k(t*w+x))+5*(diff(U(xi), xi))*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x)))+c[2]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*U(xi)^2-2*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^2*v*c[2]+c[3]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*U(xi)^4-4*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^4*v*c[3]+c[4]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*(2*(diff(U(xi), xi))^2+2*U(xi)*(diff(diff(U(xi), xi), xi)))+c[4]*U(xi)*exp(I*k(t*w+x))*(-6*(diff(U(xi), xi))*(diff(diff(U(xi), xi), xi))*v-2*U(xi)*(diff(diff(diff(U(xi), xi), xi), xi))*v)-beta*s*(-(30*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*exp(I*k(t*w+x))+(10*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-15*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+10*U(xi)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(10*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-20*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-30*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-(10*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+(5*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*(D(k))(t*w+x)*exp(I*k(t*w+x))+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*exp(I*k(t*w+x))+5*(diff(U(xi), xi))*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x)))+c[2]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*U(xi)^2+2*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^2*c[2]+c[3]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*U(xi)^4+4*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^4*c[3]+c[4]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*(2*(diff(U(xi), xi))^2+2*U(xi)*(diff(diff(U(xi), xi), xi)))+c[4]*U(xi)*exp(I*k(t*w+x))*(6*(diff(U(xi), xi))*(diff(diff(U(xi), xi), xi))+2*U(xi)*(diff(diff(diff(U(xi), xi), xi), xi)))

(8)

``

pde1 := P111 = 0

I*((diff(diff(U(xi), xi), xi))*v^2*exp(I*k(t*w+x))-(2*I)*(diff(U(xi), xi))*v*(D(k))(t*w+x)*w*exp(I*k(t*w+x))+I*U(xi)*((D@@2)(k))(t*w+x)*w^2*exp(I*k(t*w+x))-U(xi)*(D(k))(t*w+x)^2*w^2*exp(I*k(t*w+x))-s^2*((diff(diff(U(xi), xi), xi))*exp(I*k(t*w+x))+(2*I)*(diff(U(xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-U(xi)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))))+(1/24)*c[1]*(6*(diff(diff(diff(U(xi), xi), xi), xi))*v*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-4*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*w*exp(I*k(t*w+x))+4*(diff(U(xi), xi))*(D(k))(t*w+x)^4*w*exp(I*k(t*w+x))-(diff(U(xi), xi))*v*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-12*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*w*exp(I*k(t*w+x))+3*(diff(U(xi), xi))*v*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*w*exp(I*k(t*w+x))+12*(diff(diff(U(xi), xi), xi))*v*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-18*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+10*U(xi)*(D(k))(t*w+x)^3*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+I*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*w*exp(I*k(t*w+x))-16*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*w*(D(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*w*(D(k))(t*w+x)*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*w*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*w*exp(I*k(t*w+x))-I*(diff(U(xi), xi))*v*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))+(4*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*w*exp(I*k(t*w+x))-(6*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*w*exp(I*k(t*w+x))-(6*I)*(diff(diff(diff(U(xi), xi), xi), xi))*v*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-(4*I)*(diff(diff(U(xi), xi), xi))*v*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))+(6*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(diff(U(xi), xi), xi))*v*(D(k))(t*w+x)^3*exp(I*k(t*w+x))-(4*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*v*(D(k))(t*w+x)*exp(I*k(t*w+x))+4*(diff(U(xi), xi))*v*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*v*exp(I*k(t*w+x))-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*w*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*w*(D(k))(t*w+x)*exp(I*k(t*w+x))+(6*I)*(diff(U(xi), xi))*v*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-(24*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x))-alpha*s*c[1]*(-(30*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*exp(I*k(t*w+x))+(10*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-15*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+10*U(xi)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(10*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-20*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-30*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-(10*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+(5*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*(D(k))(t*w+x)*exp(I*k(t*w+x))+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*exp(I*k(t*w+x))+5*(diff(U(xi), xi))*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x)))+c[2]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*U(xi)^2-2*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^2*v*c[2]+c[3]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*U(xi)^4-4*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^4*v*c[3]+c[4]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*(2*(diff(U(xi), xi))^2+2*U(xi)*(diff(diff(U(xi), xi), xi)))+c[4]*U(xi)*exp(I*k(t*w+x))*(-6*(diff(U(xi), xi))*(diff(diff(U(xi), xi), xi))*v-2*U(xi)*(diff(diff(diff(U(xi), xi), xi), xi))*v)-beta*s*(-(30*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*exp(I*k(t*w+x))+(10*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-15*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+10*U(xi)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(10*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-20*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-30*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-(10*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+(5*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*(D(k))(t*w+x)*exp(I*k(t*w+x))+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*exp(I*k(t*w+x))+5*(diff(U(xi), xi))*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x)))+c[2]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*U(xi)^2+2*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^2*c[2]+c[3]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*U(xi)^4+4*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^4*c[3]+c[4]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*(2*(diff(U(xi), xi))^2+2*U(xi)*(diff(diff(U(xi), xi), xi)))+c[4]*U(xi)*exp(I*k(t*w+x))*(6*(diff(U(xi), xi))*(diff(diff(U(xi), xi), xi))+2*U(xi)*(diff(diff(diff(U(xi), xi), xi), xi))) = 0

(9)

numer(lhs(I*((diff(diff(U(xi), xi), xi))*v^2*exp(I*k(t*w+x))-(2*I)*(diff(U(xi), xi))*v*(D(k))(t*w+x)*w*exp(I*k(t*w+x))+I*U(xi)*((D@@2)(k))(t*w+x)*w^2*exp(I*k(t*w+x))-U(xi)*(D(k))(t*w+x)^2*w^2*exp(I*k(t*w+x))-s^2*((diff(diff(U(xi), xi), xi))*exp(I*k(t*w+x))+(2*I)*(diff(U(xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-U(xi)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))))+(1/24)*c[1]*(-(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*v*exp(I*k(t*w+x))+6*(diff(diff(diff(U(xi), xi), xi), xi))*v*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-4*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*w*exp(I*k(t*w+x))+4*(diff(U(xi), xi))*(D(k))(t*w+x)^4*w*exp(I*k(t*w+x))-12*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*w*exp(I*k(t*w+x))+3*(diff(U(xi), xi))*v*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))-(diff(U(xi), xi))*v*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*w*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))+4*(diff(U(xi), xi))*v*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-I*(diff(U(xi), xi))*v*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))-(6*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*w*exp(I*k(t*w+x))-(6*I)*(diff(diff(diff(U(xi), xi), xi), xi))*v*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-(4*I)*(diff(diff(U(xi), xi), xi))*v*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))-(4*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*v*(D(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*w*exp(I*k(t*w+x))+I*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*w*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*w*exp(I*k(t*w+x))+(6*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(diff(U(xi), xi), xi))*v*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+12*(diff(diff(U(xi), xi), xi))*v*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-18*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+10*U(xi)*(D(k))(t*w+x)^3*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-16*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*w*(D(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*w*(D(k))(t*w+x)*exp(I*k(t*w+x))+(6*I)*(diff(U(xi), xi))*v*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*w*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*w*(D(k))(t*w+x)*exp(I*k(t*w+x))-(24*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x))-alpha*s*c[1]*(-(10*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+(5*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))+(10*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-15*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+10*U(xi)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(10*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-20*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-30*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*(D(k))(t*w+x)*exp(I*k(t*w+x))-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(30*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*exp(I*k(t*w+x))+5*(diff(U(xi), xi))*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x)))+c[2]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*U(xi)^2-2*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^2*v*c[2]+c[3]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*U(xi)^4-4*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^4*v*c[3]+c[4]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*(2*(diff(U(xi), xi))^2+2*U(xi)*(diff(diff(U(xi), xi), xi)))+c[4]*U(xi)*exp(I*k(t*w+x))*(-6*(diff(U(xi), xi))*(diff(diff(U(xi), xi), xi))*v-2*U(xi)*(diff(diff(diff(U(xi), xi), xi), xi))*v)-beta*s*(-(10*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+(5*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))+(10*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-15*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+10*U(xi)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(10*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-20*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-30*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*(D(k))(t*w+x)*exp(I*k(t*w+x))-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(30*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*exp(I*k(t*w+x))+5*(diff(U(xi), xi))*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x)))+c[2]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*U(xi)^2+2*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^2*c[2]+c[3]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*U(xi)^4+4*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^4*c[3]+c[4]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*(2*(diff(U(xi), xi))^2+2*U(xi)*(diff(diff(U(xi), xi), xi)))+c[4]*U(xi)*exp(I*k(t*w+x))*(6*(diff(U(xi), xi))*(diff(diff(U(xi), xi), xi))+2*U(xi)*(diff(diff(diff(U(xi), xi), xi), xi))) = 0))*denom(rhs(I*((diff(diff(U(xi), xi), xi))*v^2*exp(I*k(t*w+x))-(2*I)*(diff(U(xi), xi))*v*(D(k))(t*w+x)*w*exp(I*k(t*w+x))+I*U(xi)*((D@@2)(k))(t*w+x)*w^2*exp(I*k(t*w+x))-U(xi)*(D(k))(t*w+x)^2*w^2*exp(I*k(t*w+x))-s^2*((diff(diff(U(xi), xi), xi))*exp(I*k(t*w+x))+(2*I)*(diff(U(xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-U(xi)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))))+(1/24)*c[1]*(-(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*v*exp(I*k(t*w+x))+6*(diff(diff(diff(U(xi), xi), xi), xi))*v*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-4*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*w*exp(I*k(t*w+x))+4*(diff(U(xi), xi))*(D(k))(t*w+x)^4*w*exp(I*k(t*w+x))-12*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*w*exp(I*k(t*w+x))+3*(diff(U(xi), xi))*v*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))-(diff(U(xi), xi))*v*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*w*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))+4*(diff(U(xi), xi))*v*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-I*(diff(U(xi), xi))*v*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))-(6*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*w*exp(I*k(t*w+x))-(6*I)*(diff(diff(diff(U(xi), xi), xi), xi))*v*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-(4*I)*(diff(diff(U(xi), xi), xi))*v*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))-(4*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*v*(D(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*w*exp(I*k(t*w+x))+I*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*w*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*w*exp(I*k(t*w+x))+(6*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(diff(U(xi), xi), xi))*v*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+12*(diff(diff(U(xi), xi), xi))*v*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-18*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+10*U(xi)*(D(k))(t*w+x)^3*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-16*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*w*(D(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*w*(D(k))(t*w+x)*exp(I*k(t*w+x))+(6*I)*(diff(U(xi), xi))*v*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*w*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*w*(D(k))(t*w+x)*exp(I*k(t*w+x))-(24*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x))-alpha*s*c[1]*(-(10*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+(5*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))+(10*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-15*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+10*U(xi)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(10*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-20*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-30*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*(D(k))(t*w+x)*exp(I*k(t*w+x))-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(30*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*exp(I*k(t*w+x))+5*(diff(U(xi), xi))*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x)))+c[2]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*U(xi)^2-2*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^2*v*c[2]+c[3]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*U(xi)^4-4*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^4*v*c[3]+c[4]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*(2*(diff(U(xi), xi))^2+2*U(xi)*(diff(diff(U(xi), xi), xi)))+c[4]*U(xi)*exp(I*k(t*w+x))*(-6*(diff(U(xi), xi))*(diff(diff(U(xi), xi), xi))*v-2*U(xi)*(diff(diff(diff(U(xi), xi), xi), xi))*v)-beta*s*(-(10*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+(5*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))+(10*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-15*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+10*U(xi)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(10*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-20*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-30*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*(D(k))(t*w+x)*exp(I*k(t*w+x))-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(30*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*exp(I*k(t*w+x))+5*(diff(U(xi), xi))*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x)))+c[2]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*U(xi)^2+2*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^2*c[2]+c[3]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*U(xi)^4+4*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^4*c[3]+c[4]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*(2*(diff(U(xi), xi))^2+2*U(xi)*(diff(diff(U(xi), xi), xi)))+c[4]*U(xi)*exp(I*k(t*w+x))*(6*(diff(U(xi), xi))*(diff(diff(U(xi), xi), xi))+2*U(xi)*(diff(diff(diff(U(xi), xi), xi), xi))) = 0)) = numer(rhs(I*((diff(diff(U(xi), xi), xi))*v^2*exp(I*k(t*w+x))-(2*I)*(diff(U(xi), xi))*v*(D(k))(t*w+x)*w*exp(I*k(t*w+x))+I*U(xi)*((D@@2)(k))(t*w+x)*w^2*exp(I*k(t*w+x))-U(xi)*(D(k))(t*w+x)^2*w^2*exp(I*k(t*w+x))-s^2*((diff(diff(U(xi), xi), xi))*exp(I*k(t*w+x))+(2*I)*(diff(U(xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-U(xi)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))))+(1/24)*c[1]*(-(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*v*exp(I*k(t*w+x))+6*(diff(diff(diff(U(xi), xi), xi), xi))*v*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-4*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*w*exp(I*k(t*w+x))+4*(diff(U(xi), xi))*(D(k))(t*w+x)^4*w*exp(I*k(t*w+x))-12*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*w*exp(I*k(t*w+x))+3*(diff(U(xi), xi))*v*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))-(diff(U(xi), xi))*v*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*w*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))+4*(diff(U(xi), xi))*v*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-I*(diff(U(xi), xi))*v*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))-(6*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*w*exp(I*k(t*w+x))-(6*I)*(diff(diff(diff(U(xi), xi), xi), xi))*v*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-(4*I)*(diff(diff(U(xi), xi), xi))*v*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))-(4*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*v*(D(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*w*exp(I*k(t*w+x))+I*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*w*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*w*exp(I*k(t*w+x))+(6*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(diff(U(xi), xi), xi))*v*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+12*(diff(diff(U(xi), xi), xi))*v*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-18*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+10*U(xi)*(D(k))(t*w+x)^3*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-16*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*w*(D(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*w*(D(k))(t*w+x)*exp(I*k(t*w+x))+(6*I)*(diff(U(xi), xi))*v*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*w*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*w*(D(k))(t*w+x)*exp(I*k(t*w+x))-(24*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x))-alpha*s*c[1]*(-(10*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+(5*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))+(10*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-15*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+10*U(xi)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(10*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-20*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-30*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*(D(k))(t*w+x)*exp(I*k(t*w+x))-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(30*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*exp(I*k(t*w+x))+5*(diff(U(xi), xi))*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x)))+c[2]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*U(xi)^2-2*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^2*v*c[2]+c[3]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*U(xi)^4-4*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^4*v*c[3]+c[4]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*(2*(diff(U(xi), xi))^2+2*U(xi)*(diff(diff(U(xi), xi), xi)))+c[4]*U(xi)*exp(I*k(t*w+x))*(-6*(diff(U(xi), xi))*(diff(diff(U(xi), xi), xi))*v-2*U(xi)*(diff(diff(diff(U(xi), xi), xi), xi))*v)-beta*s*(-(10*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+(5*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))+(10*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-15*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+10*U(xi)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(10*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-20*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-30*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*(D(k))(t*w+x)*exp(I*k(t*w+x))-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(30*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*exp(I*k(t*w+x))+5*(diff(U(xi), xi))*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x)))+c[2]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*U(xi)^2+2*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^2*c[2]+c[3]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*U(xi)^4+4*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^4*c[3]+c[4]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*(2*(diff(U(xi), xi))^2+2*U(xi)*(diff(diff(U(xi), xi), xi)))+c[4]*U(xi)*exp(I*k(t*w+x))*(6*(diff(U(xi), xi))*(diff(diff(U(xi), xi), xi))+2*U(xi)*(diff(diff(diff(U(xi), xi), xi), xi))) = 0))*denom(lhs(I*((diff(diff(U(xi), xi), xi))*v^2*exp(I*k(t*w+x))-(2*I)*(diff(U(xi), xi))*v*(D(k))(t*w+x)*w*exp(I*k(t*w+x))+I*U(xi)*((D@@2)(k))(t*w+x)*w^2*exp(I*k(t*w+x))-U(xi)*(D(k))(t*w+x)^2*w^2*exp(I*k(t*w+x))-s^2*((diff(diff(U(xi), xi), xi))*exp(I*k(t*w+x))+(2*I)*(diff(U(xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-U(xi)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))))+(1/24)*c[1]*(-(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*v*exp(I*k(t*w+x))+6*(diff(diff(diff(U(xi), xi), xi), xi))*v*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-4*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*w*exp(I*k(t*w+x))+4*(diff(U(xi), xi))*(D(k))(t*w+x)^4*w*exp(I*k(t*w+x))-12*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*w*exp(I*k(t*w+x))+3*(diff(U(xi), xi))*v*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))-(diff(U(xi), xi))*v*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*w*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))+4*(diff(U(xi), xi))*v*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-I*(diff(U(xi), xi))*v*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))-(6*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*w*exp(I*k(t*w+x))-(6*I)*(diff(diff(diff(U(xi), xi), xi), xi))*v*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-(4*I)*(diff(diff(U(xi), xi), xi))*v*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))-(4*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*v*(D(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*w*exp(I*k(t*w+x))+I*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*w*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*w*exp(I*k(t*w+x))+(6*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(diff(U(xi), xi), xi))*v*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+12*(diff(diff(U(xi), xi), xi))*v*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-18*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+10*U(xi)*(D(k))(t*w+x)^3*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-16*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*w*(D(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*w*(D(k))(t*w+x)*exp(I*k(t*w+x))+(6*I)*(diff(U(xi), xi))*v*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*w*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*w*(D(k))(t*w+x)*exp(I*k(t*w+x))-(24*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x))-alpha*s*c[1]*(-(10*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+(5*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))+(10*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-15*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+10*U(xi)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(10*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-20*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-30*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*(D(k))(t*w+x)*exp(I*k(t*w+x))-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(30*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*exp(I*k(t*w+x))+5*(diff(U(xi), xi))*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x)))+c[2]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*U(xi)^2-2*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^2*v*c[2]+c[3]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*U(xi)^4-4*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^4*v*c[3]+c[4]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*(2*(diff(U(xi), xi))^2+2*U(xi)*(diff(diff(U(xi), xi), xi)))+c[4]*U(xi)*exp(I*k(t*w+x))*(-6*(diff(U(xi), xi))*(diff(diff(U(xi), xi), xi))*v-2*U(xi)*(diff(diff(diff(U(xi), xi), xi), xi))*v)-beta*s*(-(10*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+(5*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))+(10*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-15*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+10*U(xi)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(10*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-20*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-30*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*(D(k))(t*w+x)*exp(I*k(t*w+x))-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(30*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*exp(I*k(t*w+x))+5*(diff(U(xi), xi))*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x)))+c[2]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*U(xi)^2+2*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^2*c[2]+c[3]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*U(xi)^4+4*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^4*c[3]+c[4]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*(2*(diff(U(xi), xi))^2+2*U(xi)*(diff(diff(U(xi), xi), xi)))+c[4]*U(xi)*exp(I*k(t*w+x))*(6*(diff(U(xi), xi))*(diff(diff(U(xi), xi), xi))+2*U(xi)*(diff(diff(diff(U(xi), xi), xi), xi))) = 0))

-exp(I*k(t*w+x))*(-I*U(xi)*(D(k))(t*w+x)^5*c[1]*w-(4*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*c[1]*v+(6*I)*c[1]*w*(D(k))(t*w+x)^3*(diff(diff(U(xi), xi), xi))+(4*I)*c[1]*v*((D@@3)(k))(t*w+x)*(diff(diff(U(xi), xi), xi))-(6*I)*((D@@3)(k))(t*w+x)*(diff(diff(U(xi), xi), xi))*c[1]*w-(4*I)*((D@@4)(k))(t*w+x)*(diff(U(xi), xi))*c[1]*w+(4*I)*c[1]*v*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)-I*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*c[1]*w-I*U(xi)*((D@@5)(k))(t*w+x)*c[1]*w+(6*I)*c[1]*v*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)-(4*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*c[1]*w+(24*I)*s*beta*U(xi)*(D(k))(t*w+x)^5-(240*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*beta*s+(240*I)*s*beta*((D@@3)(k))(t*w+x)*(diff(diff(U(xi), xi), xi))+(120*I)*s*beta*((D@@4)(k))(t*w+x)*(diff(U(xi), xi))+(120*I)*s*beta*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)+(24*I)*s*beta*((D@@5)(k))(t*w+x)*U(xi)+(240*I)*s*beta*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)-(48*I)*U(xi)^2*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*c[4]-(48*I)*U(xi)*(diff(U(xi), xi))^2*(D(k))(t*w+x)*c[4]-(24*I)*c[2]*w*U(xi)^3*(D(k))(t*w+x)-(24*I)*c[3]*w*U(xi)^5*(D(k))(t*w+x)+24*c[1]*s*alpha*(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))+48*c[4]*v*(diff(diff(diff(U(xi), xi), xi), xi))*U(xi)^2+c[1]*v*(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))+24*s*beta*(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))-48*c[4]*(diff(diff(diff(U(xi), xi), xi), xi))*U(xi)^2+I*c[1]*v*((D@@4)(k))(t*w+x)*(diff(U(xi), xi))-10*c[1]*w*((D@@2)(k))(t*w+x)*U(xi)*(D(k))(t*w+x)^3-12*c[1]*v*((D@@2)(k))(t*w+x)*(D(k))(t*w+x)*(diff(diff(U(xi), xi), xi))+18*c[1]*w*((D@@2)(k))(t*w+x)*(D(k))(t*w+x)*(diff(diff(U(xi), xi), xi))-4*c[1]*v*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*(diff(U(xi), xi))+16*c[1]*w*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*(diff(U(xi), xi))+5*c[1]*w*((D@@4)(k))(t*w+x)*U(xi)*(D(k))(t*w+x)+10*c[1]*w*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*U(xi)+120*c[1]*s*alpha*(D(k))(t*w+x)^4*(diff(U(xi), xi))-360*c[1]*s*alpha*((D@@2)(k))(t*w+x)^2*(diff(U(xi), xi))-240*c[1]*s*alpha*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2+192*c[4]*v*U(xi)*(diff(U(xi), xi))*(diff(diff(U(xi), xi), xi))+240*s*beta*((D@@2)(k))(t*w+x)*U(xi)*(D(k))(t*w+x)^3-720*s*beta*((D@@2)(k))(t*w+x)*(D(k))(t*w+x)*(diff(diff(U(xi), xi), xi))-480*s*beta*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*(diff(U(xi), xi))-120*s*beta*((D@@4)(k))(t*w+x)*U(xi)*(D(k))(t*w+x)-240*s*beta*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*U(xi)-(240*I)*U(xi)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*c[1]*alpha*s-(360*I)*U(xi)*(D(k))(t*w+x)*((D@@2)(k))(t*w+x)^2*c[1]*alpha*s-(720*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*((D@@2)(k))(t*w+x)*c[1]*alpha*s+240*c[1]*s*alpha*((D@@2)(k))(t*w+x)*U(xi)*(D(k))(t*w+x)^3-720*c[1]*s*alpha*((D@@2)(k))(t*w+x)*(D(k))(t*w+x)*(diff(diff(U(xi), xi), xi))-480*c[1]*s*alpha*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*(diff(U(xi), xi))-120*c[1]*s*alpha*((D@@4)(k))(t*w+x)*U(xi)*(D(k))(t*w+x)-240*c[1]*s*alpha*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*U(xi)+(15*I)*c[1]*w*((D@@2)(k))(t*w+x)^2*U(xi)*(D(k))(t*w+x)+(24*I)*c[1]*s*alpha*U(xi)*(D(k))(t*w+x)^5-(240*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*c[1]*alpha*s+(240*I)*c[1]*s*alpha*((D@@3)(k))(t*w+x)*(diff(diff(U(xi), xi), xi))+(120*I)*c[1]*s*alpha*((D@@4)(k))(t*w+x)*(diff(U(xi), xi))+(120*I)*c[1]*s*alpha*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)+(24*I)*c[1]*s*alpha*((D@@5)(k))(t*w+x)*U(xi)+(240*I)*c[1]*s*alpha*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)-(48*I)*U(xi)^2*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*c[4]*w-48*c[4]*(diff(U(xi), xi))^3-(48*I)*U(xi)*(diff(U(xi), xi))^2*(D(k))(t*w+x)*c[4]*w-(720*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*((D@@2)(k))(t*w+x)*beta*s-(240*I)*U(xi)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*beta*s-(360*I)*U(xi)*(D(k))(t*w+x)*((D@@2)(k))(t*w+x)^2*beta*s-(6*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*((D@@2)(k))(t*w+x)*c[1]*v+(24*I)*c[1]*w*((D@@2)(k))(t*w+x)*(D(k))(t*w+x)^2*(diff(U(xi), xi))+(10*I)*c[1]*w*((D@@3)(k))(t*w+x)*U(xi)*(D(k))(t*w+x)^2-(24*I)*s^2*U(xi)*(D(k))(t*w+x)^2-(24*I)*c[2]*U(xi)^3*(D(k))(t*w+x)-(24*I)*c[3]*U(xi)^5*(D(k))(t*w+x)+(24*I)*w^2*U(xi)*(D(k))(t*w+x)^2+24*w^2*((D@@2)(k))(t*w+x)*U(xi)+c[1]*v*(D(k))(t*w+x)^4*(diff(U(xi), xi))-4*c[1]*w*(D(k))(t*w+x)^4*(diff(U(xi), xi))-3*c[1]*v*((D@@2)(k))(t*w+x)^2*(diff(U(xi), xi))+12*c[1]*w*((D@@2)(k))(t*w+x)^2*(diff(U(xi), xi))-6*c[1]*v*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2+4*c[1]*w*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2+72*c[2]*v*U(xi)^2*(diff(U(xi), xi))+120*c[3]*v*U(xi)^4*(diff(U(xi), xi))+120*s*beta*(D(k))(t*w+x)^4*(diff(U(xi), xi))-360*s*beta*((D@@2)(k))(t*w+x)^2*(diff(U(xi), xi))-240*s*beta*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2-192*c[4]*U(xi)*(diff(U(xi), xi))*(diff(diff(U(xi), xi), xi))-48*w*(D(k))(t*w+x)*v*(diff(U(xi), xi))-(24*I)*v^2*(diff(diff(U(xi), xi), xi))+(24*I)*s^2*(diff(diff(U(xi), xi), xi))-48*s^2*(D(k))(t*w+x)*(diff(U(xi), xi))-24*s^2*((D@@2)(k))(t*w+x)*U(xi)+48*c[4]*v*(diff(U(xi), xi))^3-72*c[2]*U(xi)^2*(diff(U(xi), xi))-120*c[3]*U(xi)^4*(diff(U(xi), xi))) = 0

(10)

%/(-exp(I*k(t*w+x)))

-()/exp(k(t*w+x)*I)

(11)
 

``

Download tr.mw

I do not remember seeing this before or reporting. Just in case, here is how to reproduce it. This happens also in Maple 2024.2

The problem with these errors is that they can not be cought using try/catch.

I was testing a solution which most likely wrong, but I get 

                 Error, (in content/gcd) too many levels of recursion

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1866 and is the same as the version installed in this computer, created 2025, May 6, 10:52 hours Pacific Time.`

SupportTools:-Version();

`The Customer Support Updates version in the MapleCloud is 17 and is the same as the version installed in this computer, created May 5, 2025, 12:37 hours Eastern Time.`

restart;

sol:=ln((1/9*u(x)*6^(1/3)/surd((-9*A^2+2*A*x^(3/2))/(-288*A*x^(9/2)-5832*A^3*x^(3/2)+16*x^6+1944*A^2*x^3+6561*A^4),3)+1)^(1/3)/(1/81*u(x)^2*6^(2/3)/surd((-9*A^2+2*A*x^(3/2))/(-288*A*x^(9/2)-5832*A^3*x^(3/2)+16*x^6+1944*A^2*x^3+6561*A^4),3)^2-1/9*u(x)*6^(1/3)/surd((-9*A^2+2*A*x^(3/2))/(-288*A*x^(9/2)-5832*A^3*x^(3/2)+16*x^6+1944*A^2*x^3+6561*A^4),3)+1)^(1/6))+1/3*3^(1/2)*arctan(1/3*(2/9*u(x)*6^(1/3)/surd((-9*A^2+2*A*x^(3/2))/(-288*A*x^(9/2)-5832*A^3*x^(3/2)+16*x^6+1944*A^2*x^3+6561*A^4),3)-1)*3^(1/2)) = Int(3/2*(-32*x^(15/2)-6480*A^2*x^(9/2)-65610*A^4*x^(3/2)+720*A*x^6+29160*A^3*x^3+59049*A^5)/surd(-A*(-2*x^(3/2)+9*A)/(-288*A*x^(9/2)-5832*A^3*x^(3/2)+16*x^6+1944*A^2*x^3+6561*A^4),3)/(-128*x^11-54432*A^2*x^8-1837080*A^4*x^5+4782969*A^7*x^(1/2)-7440174*A^6*x^2+4960116*A^5*x^(7/2)+408240*A^3*x^(13/2)+4032*A*x^(19/2))*A*6^(1/3),x)+2*_C1;
ode:=diff(u(x),x) = -1/18/x^(1/2)*(-576*A*x^(9/2)-11664*A^3*x^(3/2)+32*x^6+3888*A^2*x^3+13122*A^4)/(-2*x^(3/2)+9*A)^3*u(x)^3-1/18/x^(1/2)*(1944*A*x^(5/2)-216*x^4-4374*A^2*x)/(-2*x^(3/2)+9*A)^3*u(x)-1/18/x^(1/2)*(486*A*x^(3/2)-2187*A^2)/(-2*x^(3/2)+9*A)^3;

ln(((1/9)*u(x)*6^(1/3)/surd((-9*A^2+2*A*x^(3/2))/(-288*A*x^(9/2)-5832*A^3*x^(3/2)+16*x^6+1944*A^2*x^3+6561*A^4), 3)+1)^(1/3)/((1/81)*u(x)^2*6^(2/3)/surd((-9*A^2+2*A*x^(3/2))/(-288*A*x^(9/2)-5832*A^3*x^(3/2)+16*x^6+1944*A^2*x^3+6561*A^4), 3)^2-(1/9)*u(x)*6^(1/3)/surd((-9*A^2+2*A*x^(3/2))/(-288*A*x^(9/2)-5832*A^3*x^(3/2)+16*x^6+1944*A^2*x^3+6561*A^4), 3)+1)^(1/6))+(1/3)*3^(1/2)*arctan((1/3)*((2/9)*u(x)*6^(1/3)/surd((-9*A^2+2*A*x^(3/2))/(-288*A*x^(9/2)-5832*A^3*x^(3/2)+16*x^6+1944*A^2*x^3+6561*A^4), 3)-1)*3^(1/2)) = Int((3/2)*(-32*x^(15/2)-6480*A^2*x^(9/2)-65610*A^4*x^(3/2)+720*A*x^6+29160*A^3*x^3+59049*A^5)*A*6^(1/3)/(surd(-A*(-2*x^(3/2)+9*A)/(-288*A*x^(9/2)-5832*A^3*x^(3/2)+16*x^6+1944*A^2*x^3+6561*A^4), 3)*(-128*x^11-54432*A^2*x^8-1837080*A^4*x^5+4782969*A^7*x^(1/2)-7440174*A^6*x^2+4960116*A^5*x^(7/2)+408240*A^3*x^(13/2)+4032*A*x^(19/2))), x)+2*_C1

diff(u(x), x) = -(1/18)*(-576*A*x^(9/2)-11664*A^3*x^(3/2)+32*x^6+3888*A^2*x^3+13122*A^4)*u(x)^3/(x^(1/2)*(-2*x^(3/2)+9*A)^3)-(1/18)*(1944*A*x^(5/2)-216*x^4-4374*A^2*x)*u(x)/(x^(1/2)*(-2*x^(3/2)+9*A)^3)-(1/18)*(486*A*x^(3/2)-2187*A^2)/(x^(1/2)*(-2*x^(3/2)+9*A)^3)

try
    odetest(sol,ode);
catch:
    print("cought error ok");
end try;

Error, (in content/gcd) too many levels of recursion

 

 

Download content_gce_odetest_error_may_7_2025.mw

I asked similar question 5 years ago about Physics update but it was not possible to find this information

How-To-Find-What-Changed-In-Physics

I'd like to ask now again same about  SupportTools. Can one find out what update is actually included in new version?

Even if it is just 2-3 lines. It will be good if users had an idea what was fixed or improved in the new version.

Any update to software should inlcude such information. Not asking for details, just general information will be nice. Right now one does an update and have no idea at all what the new update fixed or improved which is not good.

May be such information can be displayed on screen after a user updates?

I want to convert my code output into LaTeX format, but the current formatting isn't suitable for presentation. For example, when I use simplify, it sometimes introduces unnecessary fractions, making the expression look cluttered and less elegant on paper. I'm looking for a way to simplify expressions preferably by factoring terms, without introducing extra fractions, so the final LaTeX result appears clean and well-structured.

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, t)); declare(U(xi)); declare(V(xi))

u(x, t)*`will now be displayed as`*u

 

U(xi)*`will now be displayed as`*U

 

V(xi)*`will now be displayed as`*V

(2)

``

RR := (2*v*(1/3)+2*alpha*beta*(1/3))*U(xi)^3+(-3*alpha*k^2*lambda-4*alpha^2*k-k^2*v+2*k^2*w-4*k*v*w)*U(xi)+(alpha*lambda+v)*(diff(diff(U(xi), xi), xi)) = 0

((2/3)*v+(2/3)*alpha*beta)*U(xi)^3+(-3*alpha*k^2*lambda-4*alpha^2*k-k^2*v+2*k^2*w-4*k*v*w)*U(xi)+(alpha*lambda+v)*(diff(diff(U(xi), xi), xi)) = 0

(3)

IM := -2*(diff(diff(U(xi), xi), xi))*v*k-2*U(xi)*k^2*w^2-2*(diff(diff(U(xi), xi), xi))*alpha^2+2*(diff(diff(U(xi), xi), xi))*v^2+(diff(diff(U(xi), xi), xi))*k*w+2*U(xi)^3*k*w-2*U(xi)^3*alpha*beta*k-3*(diff(diff(U(xi), xi), xi))*alpha*k*lambda-U(xi)*k^3*w+2*U(xi)*alpha^2*k^2+U(xi)*alpha*k^3*lambda = 0

-2*(diff(diff(U(xi), xi), xi))*v*k-2*U(xi)*k^2*w^2-2*(diff(diff(U(xi), xi), xi))*alpha^2+2*(diff(diff(U(xi), xi), xi))*v^2+(diff(diff(U(xi), xi), xi))*k*w+2*U(xi)^3*k*w-2*U(xi)^3*alpha*beta*k-3*(diff(diff(U(xi), xi), xi))*alpha*k*lambda-U(xi)*k^3*w+2*U(xi)*alpha^2*k^2+U(xi)*alpha*k^3*lambda = 0

(4)

collect(%, {U(xi), diff(diff(U(xi), xi), xi)})

(-2*alpha*beta*k+2*k*w)*U(xi)^3+(alpha*k^3*lambda+2*alpha^2*k^2-k^3*w-2*k^2*w^2)*U(xi)+(-3*alpha*k*lambda-2*alpha^2-2*k*v+k*w+2*v^2)*(diff(diff(U(xi), xi), xi)) = 0

(5)

P := %

(-2*alpha*beta*k+2*k*w)*U(xi)^3+(alpha*k^3*lambda+2*alpha^2*k^2-k^3*w-2*k^2*w^2)*U(xi)+(-3*alpha*k*lambda-2*alpha^2-2*k*v+k*w+2*v^2)*(diff(diff(U(xi), xi), xi)) = 0

(6)

NULL

NULL

C1 := v = solve(2*v*(1/3)+2*alpha*beta*(1/3) = 0, v)

v = -alpha*beta

(7)

C2 := k = solve(-3*alpha*k^2*lambda-4*alpha^2*k-k^2*v+2*k^2*w-4*k*v*w = 0, k)

k = (0, -4*(alpha^2+v*w)/(3*alpha*lambda+v-2*w))

(8)

C22 := subs(C1, C2)

k = (0, -4*(-alpha*beta*w+alpha^2)/(-alpha*beta+3*alpha*lambda-2*w))

(9)

C222 := k = -(4*(-alpha*beta*w+alpha^2))/(-alpha*beta+3*alpha*lambda-2*w)

k = -4*(-alpha*beta*w+alpha^2)/(-alpha*beta+3*alpha*lambda-2*w)

(10)

ode := subs({C1, C222}, P)

(8*alpha*beta*(-alpha*beta*w+alpha^2)/(-alpha*beta+3*alpha*lambda-2*w)-8*(-alpha*beta*w+alpha^2)*w/(-alpha*beta+3*alpha*lambda-2*w))*U(xi)^3+(-64*alpha*(-alpha*beta*w+alpha^2)^3*lambda/(-alpha*beta+3*alpha*lambda-2*w)^3+32*alpha^2*(-alpha*beta*w+alpha^2)^2/(-alpha*beta+3*alpha*lambda-2*w)^2+64*(-alpha*beta*w+alpha^2)^3*w/(-alpha*beta+3*alpha*lambda-2*w)^3-32*(-alpha*beta*w+alpha^2)^2*w^2/(-alpha*beta+3*alpha*lambda-2*w)^2)*U(xi)+(12*alpha*(-alpha*beta*w+alpha^2)*lambda/(-alpha*beta+3*alpha*lambda-2*w)-2*alpha^2-8*alpha*beta*(-alpha*beta*w+alpha^2)/(-alpha*beta+3*alpha*lambda-2*w)-4*(-alpha*beta*w+alpha^2)*w/(-alpha*beta+3*alpha*lambda-2*w)+2*alpha^2*beta^2)*(diff(diff(U(xi), xi), xi)) = 0

(11)

numer(lhs((8*alpha*beta*(-alpha*beta*w+alpha^2)/(-alpha*beta+3*alpha*lambda-2*w)-8*(-alpha*beta*w+alpha^2)*w/(-alpha*beta+3*alpha*lambda-2*w))*U(xi)^3+(-64*alpha*(-alpha*beta*w+alpha^2)^3*lambda/(-alpha*beta+3*alpha*lambda-2*w)^3+32*alpha^2*(-alpha*beta*w+alpha^2)^2/(-alpha*beta+3*alpha*lambda-2*w)^2+64*(-alpha*beta*w+alpha^2)^3*w/(-alpha*beta+3*alpha*lambda-2*w)^3-32*(-alpha*beta*w+alpha^2)^2*w^2/(-alpha*beta+3*alpha*lambda-2*w)^2)*U(xi)+(12*alpha*(-alpha*beta*w+alpha^2)*lambda/(-alpha*beta+3*alpha*lambda-2*w)-2*alpha^2-8*alpha*beta*(-alpha*beta*w+alpha^2)/(-alpha*beta+3*alpha*lambda-2*w)-4*(-alpha*beta*w+alpha^2)*w/(-alpha*beta+3*alpha*lambda-2*w)+2*alpha^2*beta^2)*(diff(diff(U(xi), xi), xi)) = 0))*denom(rhs((8*alpha*beta*(-alpha*beta*w+alpha^2)/(-alpha*beta+3*alpha*lambda-2*w)-8*(-alpha*beta*w+alpha^2)*w/(-alpha*beta+3*alpha*lambda-2*w))*U(xi)^3+(-64*alpha*(-alpha*beta*w+alpha^2)^3*lambda/(-alpha*beta+3*alpha*lambda-2*w)^3+32*alpha^2*(-alpha*beta*w+alpha^2)^2/(-alpha*beta+3*alpha*lambda-2*w)^2+64*(-alpha*beta*w+alpha^2)^3*w/(-alpha*beta+3*alpha*lambda-2*w)^3-32*(-alpha*beta*w+alpha^2)^2*w^2/(-alpha*beta+3*alpha*lambda-2*w)^2)*U(xi)+(12*alpha*(-alpha*beta*w+alpha^2)*lambda/(-alpha*beta+3*alpha*lambda-2*w)-2*alpha^2-8*alpha*beta*(-alpha*beta*w+alpha^2)/(-alpha*beta+3*alpha*lambda-2*w)-4*(-alpha*beta*w+alpha^2)*w/(-alpha*beta+3*alpha*lambda-2*w)+2*alpha^2*beta^2)*(diff(diff(U(xi), xi), xi)) = 0)) = numer(rhs((8*alpha*beta*(-alpha*beta*w+alpha^2)/(-alpha*beta+3*alpha*lambda-2*w)-8*(-alpha*beta*w+alpha^2)*w/(-alpha*beta+3*alpha*lambda-2*w))*U(xi)^3+(-64*alpha*(-alpha*beta*w+alpha^2)^3*lambda/(-alpha*beta+3*alpha*lambda-2*w)^3+32*alpha^2*(-alpha*beta*w+alpha^2)^2/(-alpha*beta+3*alpha*lambda-2*w)^2+64*(-alpha*beta*w+alpha^2)^3*w/(-alpha*beta+3*alpha*lambda-2*w)^3-32*(-alpha*beta*w+alpha^2)^2*w^2/(-alpha*beta+3*alpha*lambda-2*w)^2)*U(xi)+(12*alpha*(-alpha*beta*w+alpha^2)*lambda/(-alpha*beta+3*alpha*lambda-2*w)-2*alpha^2-8*alpha*beta*(-alpha*beta*w+alpha^2)/(-alpha*beta+3*alpha*lambda-2*w)-4*(-alpha*beta*w+alpha^2)*w/(-alpha*beta+3*alpha*lambda-2*w)+2*alpha^2*beta^2)*(diff(diff(U(xi), xi), xi)) = 0))*denom(lhs((8*alpha*beta*(-alpha*beta*w+alpha^2)/(-alpha*beta+3*alpha*lambda-2*w)-8*(-alpha*beta*w+alpha^2)*w/(-alpha*beta+3*alpha*lambda-2*w))*U(xi)^3+(-64*alpha*(-alpha*beta*w+alpha^2)^3*lambda/(-alpha*beta+3*alpha*lambda-2*w)^3+32*alpha^2*(-alpha*beta*w+alpha^2)^2/(-alpha*beta+3*alpha*lambda-2*w)^2+64*(-alpha*beta*w+alpha^2)^3*w/(-alpha*beta+3*alpha*lambda-2*w)^3-32*(-alpha*beta*w+alpha^2)^2*w^2/(-alpha*beta+3*alpha*lambda-2*w)^2)*U(xi)+(12*alpha*(-alpha*beta*w+alpha^2)*lambda/(-alpha*beta+3*alpha*lambda-2*w)-2*alpha^2-8*alpha*beta*(-alpha*beta*w+alpha^2)/(-alpha*beta+3*alpha*lambda-2*w)-4*(-alpha*beta*w+alpha^2)*w/(-alpha*beta+3*alpha*lambda-2*w)+2*alpha^2*beta^2)*(diff(diff(U(xi), xi), xi)) = 0))

-2*alpha*(-24*U(xi)^3*alpha^4*beta^2*lambda+36*U(xi)^3*alpha^4*beta*lambda^2-12*U(xi)^3*alpha^2*beta^3*w^2-16*U(xi)*alpha^4*beta^3*w^2-16*U(xi)*alpha^2*beta^3*w^4+9*(diff(diff(U(xi), xi), xi))*alpha^4*beta^4*lambda-27*(diff(diff(U(xi), xi), xi))*alpha^4*beta^3*lambda^2+27*(diff(diff(U(xi), xi), xi))*alpha^4*beta^2*lambda^3+12*U(xi)^3*alpha^3*beta^2*w-36*U(xi)^3*alpha^3*lambda^2*w+32*U(xi)*alpha^5*beta^2*w+32*U(xi)*alpha^3*beta^2*w^3+32*U(xi)*alpha*beta^2*w^5-2*(diff(diff(U(xi), xi), xi))*alpha^3*beta^4*w+48*U(xi)^3*alpha^2*lambda*w^2-16*U(xi)*alpha^4*beta*w^2-48*U(xi)*alpha^4*lambda*w^2-64*U(xi)*alpha^2*beta*w^4+21*(diff(diff(U(xi), xi), xi))*alpha^4*beta^2*lambda-45*(diff(diff(U(xi), xi), xi))*alpha^4*beta*lambda^2+6*(diff(diff(U(xi), xi), xi))*alpha^2*beta^3*w^2-12*(diff(diff(U(xi), xi), xi))*alpha^3*beta^2*w-36*(diff(diff(U(xi), xi), xi))*alpha^3*lambda^2*w+16*(diff(diff(U(xi), xi), xi))*alpha*beta^2*w^3-12*(diff(diff(U(xi), xi), xi))*alpha^2*beta*w^2+12*(diff(diff(U(xi), xi), xi))*alpha^2*lambda*w^2-4*U(xi)^3*alpha^3*beta^4*w+24*U(xi)^3*alpha^3*beta^3*lambda*w-36*U(xi)^3*alpha^3*beta^2*lambda^2*w+32*U(xi)*alpha^3*beta^3*lambda*w^3+24*U(xi)^3*alpha^2*beta^2*lambda*w^2+36*U(xi)^3*alpha^2*beta*lambda^2*w^2-48*U(xi)*alpha^4*beta^2*lambda*w^2-48*U(xi)*alpha^2*beta^2*lambda*w^4-24*U(xi)^3*alpha^3*beta*lambda*w-48*U(xi)^3*alpha*beta*lambda*w^3+96*U(xi)*alpha^3*beta*lambda*w^3+6*(diff(diff(U(xi), xi), xi))*alpha^3*beta^3*lambda*w+18*(diff(diff(U(xi), xi), xi))*alpha^3*beta^2*lambda^2*w-54*(diff(diff(U(xi), xi), xi))*alpha^3*beta*lambda^3*w-48*(diff(diff(U(xi), xi), xi))*alpha^2*beta^2*lambda*w^2+90*(diff(diff(U(xi), xi), xi))*alpha^2*beta*lambda^2*w^2+48*(diff(diff(U(xi), xi), xi))*alpha^3*beta*lambda*w-48*(diff(diff(U(xi), xi), xi))*alpha*beta*lambda*w^3+4*U(xi)^3*alpha^4*beta^3-(diff(diff(U(xi), xi), xi))*alpha^4*beta^5+16*U(xi)^3*beta*w^4-16*U(xi)*alpha^6*beta+16*U(xi)*alpha^6*lambda-3*(diff(diff(U(xi), xi), xi))*alpha^4*beta^3+27*(diff(diff(U(xi), xi), xi))*alpha^4*lambda^3-16*U(xi)^3*alpha*w^3+32*U(xi)*alpha^3*w^3+8*(diff(diff(U(xi), xi), xi))*beta*w^4) = 0

(12)

simplify(-2*alpha*(24*U(xi)^3*alpha^3*beta^3*lambda*w-36*U(xi)^3*alpha^3*beta^2*lambda^2*w+32*U(xi)*alpha^3*beta^3*lambda*w^3+24*U(xi)^3*alpha^2*beta^2*lambda*w^2+36*U(xi)^3*alpha^2*beta*lambda^2*w^2-48*U(xi)*alpha^4*beta^2*lambda*w^2-48*U(xi)*alpha^2*beta^2*lambda*w^4-24*U(xi)^3*alpha^3*beta*lambda*w-48*U(xi)^3*alpha*beta*lambda*w^3+96*U(xi)*alpha^3*beta*lambda*w^3+6*(diff(diff(U(xi), xi), xi))*alpha^3*beta^3*lambda*w+18*(diff(diff(U(xi), xi), xi))*alpha^3*beta^2*lambda^2*w-54*(diff(diff(U(xi), xi), xi))*alpha^3*beta*lambda^3*w-48*(diff(diff(U(xi), xi), xi))*alpha^2*beta^2*lambda*w^2+90*(diff(diff(U(xi), xi), xi))*alpha^2*beta*lambda^2*w^2+48*(diff(diff(U(xi), xi), xi))*alpha^3*beta*lambda*w-48*(diff(diff(U(xi), xi), xi))*alpha*beta*lambda*w^3-24*U(xi)^3*alpha^4*beta^2*lambda+36*U(xi)^3*alpha^4*beta*lambda^2-12*U(xi)^3*alpha^2*beta^3*w^2-16*U(xi)*alpha^4*beta^3*w^2-16*U(xi)*alpha^2*beta^3*w^4+9*(diff(diff(U(xi), xi), xi))*alpha^4*beta^4*lambda-27*(diff(diff(U(xi), xi), xi))*alpha^4*beta^3*lambda^2+27*(diff(diff(U(xi), xi), xi))*alpha^4*beta^2*lambda^3+12*U(xi)^3*alpha^3*beta^2*w-36*U(xi)^3*alpha^3*lambda^2*w+32*U(xi)*alpha^5*beta^2*w+32*U(xi)*alpha^3*beta^2*w^3+32*U(xi)*alpha*beta^2*w^5-2*(diff(diff(U(xi), xi), xi))*alpha^3*beta^4*w+48*U(xi)^3*alpha^2*lambda*w^2-16*U(xi)*alpha^4*beta*w^2-48*U(xi)*alpha^4*lambda*w^2-64*U(xi)*alpha^2*beta*w^4+21*(diff(diff(U(xi), xi), xi))*alpha^4*beta^2*lambda-45*(diff(diff(U(xi), xi), xi))*alpha^4*beta*lambda^2+6*(diff(diff(U(xi), xi), xi))*alpha^2*beta^3*w^2-12*(diff(diff(U(xi), xi), xi))*alpha^3*beta^2*w-36*(diff(diff(U(xi), xi), xi))*alpha^3*lambda^2*w+16*(diff(diff(U(xi), xi), xi))*alpha*beta^2*w^3-12*(diff(diff(U(xi), xi), xi))*alpha^2*beta*w^2+12*(diff(diff(U(xi), xi), xi))*alpha^2*lambda*w^2-4*U(xi)^3*alpha^3*beta^4*w-(diff(diff(U(xi), xi), xi))*alpha^4*beta^5+4*U(xi)^3*alpha^4*beta^3+16*U(xi)^3*beta*w^4-16*U(xi)*alpha^6*beta+16*U(xi)*alpha^6*lambda-3*(diff(diff(U(xi), xi), xi))*alpha^4*beta^3+27*(diff(diff(U(xi), xi), xi))*alpha^4*lambda^3-16*U(xi)^3*alpha*w^3+32*U(xi)*alpha^3*w^3+8*(diff(diff(U(xi), xi), xi))*beta*w^4) = 0)

-64*alpha*((1/4)*((1/2)*(-beta^3+3*beta^2*lambda-3*beta+3*lambda)*alpha^2+beta*w*(beta-3*lambda)*alpha+beta*w^2)*((1/2)*(beta-3*lambda)*alpha+w)^2*(diff(diff(U(xi), xi), xi))+((1/2)*(-alpha*beta+w)*((1/2)*(beta-3*lambda)*alpha+w)^2*U(xi)^2+alpha*((1/2)*(-beta+lambda)*alpha^3+w*beta*alpha^2*lambda-(1/2)*w^2*(beta+3*lambda)*alpha+w^3)*(beta*w-alpha))*(beta*w-alpha)*U(xi)) = 0

(13)

%/(-64*alpha)

(1/4)*((1/2)*(-beta^3+3*beta^2*lambda-3*beta+3*lambda)*alpha^2+beta*w*(beta-3*lambda)*alpha+beta*w^2)*((1/2)*(beta-3*lambda)*alpha+w)^2*(diff(diff(U(xi), xi), xi))+((1/2)*(-alpha*beta+w)*((1/2)*(beta-3*lambda)*alpha+w)^2*U(xi)^2+alpha*((1/2)*(-beta+lambda)*alpha^3+w*beta*alpha^2*lambda-(1/2)*w^2*(beta+3*lambda)*alpha+w^3)*(beta*w-alpha))*(beta*w-alpha)*U(xi) = 0

(14)

PP := numer(lhs((1/4)*((1/2)*(-beta^3+3*beta^2*lambda-3*beta+3*lambda)*alpha^2+beta*w*(beta-3*lambda)*alpha+beta*w^2)*((1/2)*(beta-3*lambda)*alpha+w)^2*(diff(diff(U(xi), xi), xi))+((1/2)*(-alpha*beta+w)*((1/2)*(beta-3*lambda)*alpha+w)^2*U(xi)^2+alpha*((1/2)*(-beta+lambda)*alpha^3+w*beta*alpha^2*lambda-(1/2)*w^2*(beta+3*lambda)*alpha+w^3)*(beta*w-alpha))*(beta*w-alpha)*U(xi) = 0))*denom(rhs((1/4)*((1/2)*(-beta^3+3*beta^2*lambda-3*beta+3*lambda)*alpha^2+beta*w*(beta-3*lambda)*alpha+beta*w^2)*((1/2)*(beta-3*lambda)*alpha+w)^2*(diff(diff(U(xi), xi), xi))+((1/2)*(-alpha*beta+w)*((1/2)*(beta-3*lambda)*alpha+w)^2*U(xi)^2+alpha*((1/2)*(-beta+lambda)*alpha^3+w*beta*alpha^2*lambda-(1/2)*w^2*(beta+3*lambda)*alpha+w^3)*(beta*w-alpha))*(beta*w-alpha)*U(xi) = 0)) = numer(rhs((1/4)*((1/2)*(-beta^3+3*beta^2*lambda-3*beta+3*lambda)*alpha^2+beta*w*(beta-3*lambda)*alpha+beta*w^2)*((1/2)*(beta-3*lambda)*alpha+w)^2*(diff(diff(U(xi), xi), xi))+((1/2)*(-alpha*beta+w)*((1/2)*(beta-3*lambda)*alpha+w)^2*U(xi)^2+alpha*((1/2)*(-beta+lambda)*alpha^3+w*beta*alpha^2*lambda-(1/2)*w^2*(beta+3*lambda)*alpha+w^3)*(beta*w-alpha))*(beta*w-alpha)*U(xi) = 0))*denom(lhs((1/4)*((1/2)*(-beta^3+3*beta^2*lambda-3*beta+3*lambda)*alpha^2+beta*w*(beta-3*lambda)*alpha+beta*w^2)*((1/2)*(beta-3*lambda)*alpha+w)^2*(diff(diff(U(xi), xi), xi))+((1/2)*(-alpha*beta+w)*((1/2)*(beta-3*lambda)*alpha+w)^2*U(xi)^2+alpha*((1/2)*(-beta+lambda)*alpha^3+w*beta*alpha^2*lambda-(1/2)*w^2*(beta+3*lambda)*alpha+w^3)*(beta*w-alpha))*(beta*w-alpha)*U(xi) = 0))

-24*U(xi)^3*alpha^4*beta^2*lambda+36*U(xi)^3*alpha^4*beta*lambda^2-12*U(xi)^3*alpha^2*beta^3*w^2-16*U(xi)*alpha^4*beta^3*w^2-16*U(xi)*alpha^2*beta^3*w^4+9*(diff(diff(U(xi), xi), xi))*alpha^4*beta^4*lambda-27*(diff(diff(U(xi), xi), xi))*alpha^4*beta^3*lambda^2+27*(diff(diff(U(xi), xi), xi))*alpha^4*beta^2*lambda^3+12*U(xi)^3*alpha^3*beta^2*w-36*U(xi)^3*alpha^3*lambda^2*w+32*U(xi)*alpha^5*beta^2*w+32*U(xi)*alpha^3*beta^2*w^3+32*U(xi)*alpha*beta^2*w^5-2*(diff(diff(U(xi), xi), xi))*alpha^3*beta^4*w+48*U(xi)^3*alpha^2*lambda*w^2-16*U(xi)*alpha^4*beta*w^2-48*U(xi)*alpha^4*lambda*w^2-64*U(xi)*alpha^2*beta*w^4+21*(diff(diff(U(xi), xi), xi))*alpha^4*beta^2*lambda-45*(diff(diff(U(xi), xi), xi))*alpha^4*beta*lambda^2+6*(diff(diff(U(xi), xi), xi))*alpha^2*beta^3*w^2-12*(diff(diff(U(xi), xi), xi))*alpha^3*beta^2*w-36*(diff(diff(U(xi), xi), xi))*alpha^3*lambda^2*w+16*(diff(diff(U(xi), xi), xi))*alpha*beta^2*w^3-12*(diff(diff(U(xi), xi), xi))*alpha^2*beta*w^2+12*(diff(diff(U(xi), xi), xi))*alpha^2*lambda*w^2-4*U(xi)^3*alpha^3*beta^4*w+24*U(xi)^3*alpha^3*beta^3*lambda*w-36*U(xi)^3*alpha^3*beta^2*lambda^2*w+32*U(xi)*alpha^3*beta^3*lambda*w^3+24*U(xi)^3*alpha^2*beta^2*lambda*w^2+36*U(xi)^3*alpha^2*beta*lambda^2*w^2-48*U(xi)*alpha^4*beta^2*lambda*w^2-48*U(xi)*alpha^2*beta^2*lambda*w^4-24*U(xi)^3*alpha^3*beta*lambda*w-48*U(xi)^3*alpha*beta*lambda*w^3+96*U(xi)*alpha^3*beta*lambda*w^3+6*(diff(diff(U(xi), xi), xi))*alpha^3*beta^3*lambda*w+18*(diff(diff(U(xi), xi), xi))*alpha^3*beta^2*lambda^2*w-54*(diff(diff(U(xi), xi), xi))*alpha^3*beta*lambda^3*w-48*(diff(diff(U(xi), xi), xi))*alpha^2*beta^2*lambda*w^2+90*(diff(diff(U(xi), xi), xi))*alpha^2*beta*lambda^2*w^2+48*(diff(diff(U(xi), xi), xi))*alpha^3*beta*lambda*w-48*(diff(diff(U(xi), xi), xi))*alpha*beta*lambda*w^3+4*U(xi)^3*alpha^4*beta^3-(diff(diff(U(xi), xi), xi))*alpha^4*beta^5+16*U(xi)^3*beta*w^4-16*U(xi)*alpha^6*beta+16*U(xi)*alpha^6*lambda-3*(diff(diff(U(xi), xi), xi))*alpha^4*beta^3+27*(diff(diff(U(xi), xi), xi))*alpha^4*lambda^3-16*U(xi)^3*alpha*w^3+32*U(xi)*alpha^3*w^3+8*(diff(diff(U(xi), xi), xi))*beta*w^4 = 0

(15)

NULL

collect(PP, {U(xi), diff(U(xi), xi), diff(diff(U(xi), xi), xi)})

(-4*alpha^3*beta^4*w+24*alpha^3*beta^3*lambda*w-36*alpha^3*beta^2*lambda^2*w+4*alpha^4*beta^3-24*alpha^4*beta^2*lambda+36*alpha^4*beta*lambda^2-12*alpha^2*beta^3*w^2+24*alpha^2*beta^2*lambda*w^2+36*alpha^2*beta*lambda^2*w^2+12*alpha^3*beta^2*w-24*alpha^3*beta*lambda*w-36*alpha^3*lambda^2*w-48*alpha*beta*lambda*w^3+48*alpha^2*lambda*w^2+16*beta*w^4-16*alpha*w^3)*U(xi)^3+(32*alpha^3*beta^3*lambda*w^3-16*alpha^4*beta^3*w^2-48*alpha^4*beta^2*lambda*w^2-16*alpha^2*beta^3*w^4-48*alpha^2*beta^2*lambda*w^4+32*alpha^5*beta^2*w+32*alpha^3*beta^2*w^3+96*alpha^3*beta*lambda*w^3+32*alpha*beta^2*w^5-16*alpha^6*beta+16*alpha^6*lambda-16*alpha^4*beta*w^2-48*alpha^4*lambda*w^2-64*alpha^2*beta*w^4+32*alpha^3*w^3)*U(xi)+(-alpha^4*beta^5+9*alpha^4*beta^4*lambda-27*alpha^4*beta^3*lambda^2+27*alpha^4*beta^2*lambda^3-2*alpha^3*beta^4*w+6*alpha^3*beta^3*lambda*w+18*alpha^3*beta^2*lambda^2*w-54*alpha^3*beta*lambda^3*w-3*alpha^4*beta^3+21*alpha^4*beta^2*lambda-45*alpha^4*beta*lambda^2+27*alpha^4*lambda^3+6*alpha^2*beta^3*w^2-48*alpha^2*beta^2*lambda*w^2+90*alpha^2*beta*lambda^2*w^2-12*alpha^3*beta^2*w+48*alpha^3*beta*lambda*w-36*alpha^3*lambda^2*w+16*alpha*beta^2*w^3-48*alpha*beta*lambda*w^3-12*alpha^2*beta*w^2+12*alpha^2*lambda*w^2+8*beta*w^4)*(diff(diff(U(xi), xi), xi)) = 0

(16)
 

NULL

Download B-R.mw

How can we eliminate nonlinear terms involving two functions in a differential equation?

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(G(xi)); declare(Q(x, t)); declare(Q1(x, t))

G(xi)*`will now be displayed as`*G

 

Q(x, t)*`will now be displayed as`*Q

 

Q1(x, t)*`will now be displayed as`*Q1

(2)

NULL

q := (sqrt(P)+Q(x, t))*exp(I*gamma*P*t); B := (sqrt(P)+Q(x, t))*exp(-I*gamma*P*t); B1 := sqrt(P)+Q(x, t); P+sqrt(P)*(Q1(x, t)+Q(x, t))

GeF := I*(diff(q, t))+alpha[1]*(diff(q, x, x))+alpha[2]*(P+sqrt(P)*(Q1(x, t)+Q(x, t)))*q+alpha[3]*(P+sqrt(P)*(Q1(x, t)+Q(x, t)))^2*q+alpha[4]*(P+sqrt(P)*(Q1(x, t)+Q(x, t)))^3*q+alpha[5]*(diff(P+sqrt(P)*(Q1(x, t)+Q(x, t)), x, x))*q = 0

K := simplify(GeF*exp(-I*gamma*P*t))

(Q(x, t)^4*alpha[4]+3*Q(x, t)^3*Q1(x, t)*alpha[4]+3*(Q1(x, t)^2*alpha[4]+alpha[3])*Q(x, t)^2+Q1(x, t)*(Q1(x, t)^2*alpha[4]+4*alpha[3])*Q(x, t)+Q1(x, t)^2*alpha[3]+alpha[2]-gamma)*P^(3/2)+(6*Q(x, t)^2*alpha[4]+9*Q(x, t)*Q1(x, t)*alpha[4]+3*Q1(x, t)^2*alpha[4]+alpha[3])*P^(5/2)+(P^(1/2)*Q(x, t)*alpha[5]+P*alpha[5]+alpha[1])*(diff(diff(Q(x, t), x), x))+alpha[5]*(P^(1/2)*Q(x, t)+P)*(diff(diff(Q1(x, t), x), x))+P^(7/2)*alpha[4]+I*(diff(Q(x, t), t))+alpha[2]*(Q1(x, t)*Q(x, t)+Q(x, t)^2)*P^(1/2)+(4*P^2*alpha[4]+P*alpha[3])*Q(x, t)^3+(9*P^2*alpha[4]+2*P*alpha[3])*Q1(x, t)*Q(x, t)^2+((6*P^2*alpha[4]+P*alpha[3])*Q1(x, t)^2+4*alpha[4]*P^3+3*alpha[3]*P^2+(2*alpha[2]-gamma)*P)*Q(x, t)+P^2*Q1(x, t)^3*alpha[4]+(3*P^3*alpha[4]+2*P^2*alpha[3]+P*alpha[2])*Q1(x, t) = 0

(3)

remove(has, K, {Q(x, t)^2, Q(x, t)^3, Q(x, t)^4, Q1(x, t)^2, Q1(x, t)^3, Q1(x, t)^4})

() = 0

(4)

NULL

NULL

AA := (alpha[2]-gamma)*P^(3/2)+alpha[3]*P^(5/2)+(P*alpha[5]+alpha[1])*(diff(Q(x, t), x, x))+alpha[5]*P*(diff(Q1(x, t), x, x))+P^(7/2)*alpha[4]+I*(diff(Q(x, t), t))+(4*alpha[4]*P^3+3*alpha[3]*P^2+(2*alpha[2]-gamma)*P)*Q(x, t)+(3*P^3*alpha[4]+2*P^2*alpha[3]+P*alpha[2])*Q1(x, t) = 0

(alpha[2]-gamma)*P^(3/2)+P^(5/2)*alpha[3]+(P*alpha[5]+alpha[1])*(diff(diff(Q(x, t), x), x))+P*(diff(diff(Q1(x, t), x), x))*alpha[5]+P^(7/2)*alpha[4]+I*(diff(Q(x, t), t))+(4*alpha[4]*P^3+3*alpha[3]*P^2+(2*alpha[2]-gamma)*P)*Q(x, t)+(3*P^3*alpha[4]+2*P^2*alpha[3]+P*alpha[2])*Q1(x, t) = 0

(5)
 

test := (alpha[2]-gamma)*P^(3/2)+alpha[3]*P^(5/2)+(P*alpha[5]+alpha[1])*0+P*alpha[5]*0+P^(7/2)*alpha[4]+I*0 = 0

(alpha[2]-gamma)*P^(3/2)+P^(5/2)*alpha[3]+P^(7/2)*alpha[4] = 0

(6)
 

NULL

Download remove.mw

Hi!

Sorry if I am missing something or not following any implicit rules, I am really new to Maple and this forum.

For the sake of completeness, here the code that is given:

Ve := Vector([VeX, VeY, VeZ]);
with(LinearAlgebra);
Vh := Normalize(Vector([alphaX*Ve(1), alphaY*Ve(2), Ve(3)]), Euclidean, conjugate = false);
lensq := Vh(1)*Vh(1) + Vh(2)*Vh(2);
T1 := Vector([-Vh(2), Vh(1), 0])/sqrt(lensq);
T2 := CrossProduct(Vh, T1);
r := sqrt(x);
phi := 2*Pi*y;
t1 := r*cos(phi);
t2 := r*sin(phi);
s := 1/2*(1 + Vh(3));
t22 := (1 - s)*sqrt(1 - t1*t1) + s*t2;
Nh := t1*T1 + t22*T2 + sqrt(1 - t1*t1 - t22*t22)*Vh;
NULL;
Ne := Normalize(Vector([alphaX*Nh(1), alphaY*Nh(2), Nh(3)]), Euclidean, conjugate = false);
AV := (-1 + sqrt(1 + (alphaX^2*Ve(1)^2 + alphaY^2*Ve(2)^2)/Ve(3)^2))/2;
G1 := 1/(1 + AV);
DN := 1/(Pi*alphaX*alphaY*(Ne(1)^2/alphaX^2 + Ne(2)^2/alphaY^2 + Ne(3)^2)^2);

DVN := G1*DotProduct(Ve, Ne, conjugate = false)*DN/DotProduct(Ve, Vector([0, 0, 1]), conjugate = false);
PDF := DVN/(4*DotProduct(Ve, Ne, conjugate = false));

 

So far, so good. Now what I want to do is:

PDFint := int(PDF, [x = xInf .. xSup, y = yInf .. ySup]);

to calculate the symbolic integral of PDF over x and y. The issue is that I keep running out of memory after a few hours and my operating system (Linux Fedora) automatically shuts Maple down.

I am convinced that there must be a way to either preprocess PDF so that the int(...) command doesn't eat up all the RAM, or some different way to calculate an integral that maybe has a different structure?

I have tried codegen[optimize](PDF) and liked what it did, but I don't know how to progress with the result of it, if at all possible.

I know that there is also a way to calculate the integral numerically, but I need the analytic integral, so numerical solutions are of no use to me.

If there is really no way for me to obtain this integral, I would really appreciate an explanation of why, so that I can rest at night finally lol.

Thank you in advance,

Jane

1 2 3 4 5 6 7 Last Page 2 of 2414