MaplePrimes Questions

I would prefer that all the polynomials generated in my workbook by MAPLE were in expanded form.  For instance, it the elements of a matrix are polynomials, I want to see the expanded form for all of them.  What do I type into a workbook to make this happen.  (I am a new user of MAPLE.) 

12pt type is difficult for me to read.  I would like to fix a workbook so that everything yet to appear will be in 18pt type, without my having to enlarge things one at a time.   (I am a new MAPLE user.)  

When I print 2 matrix it always try to multiply them. How to force just to show?

Hi

Given two lists I and J of the same size, how can we find all perfect mathings of two lists? 

In other way, how can we find all pairing of elements of I and J? 

For exapmle, given I = [1,2,3] and J = [4,5,6], i would like to get 

[[1,4],[2,5],[3,6]], [[1,4], [2,6],[3,5]], [[1,5],[2,4],[3,6]], [[1,5],[2,6],[3,4]], [[1,6],[2,4],[3,5]], [[1,6],[2,5],[3,4]]

I can see how I can use the permutation of one list and match component-wise in order will do it, but would there be more efficient way to complete  the task? 

Ultimately, I would like do this for a list of lists, that is, for example,

I = [[3,5],[6,7,9,12]] and J = [[8,10], [1,2,4,11]] then I would like to get 

[[3,8],[5,10],[6,1],[7,2],[9,4],[12,11]] and by the above example, get 24 of product of disjoint cycles like such.

Thanks

I have seen several animated avatars on MaplePrimes. How is this done? I tried to make an animated GIF file my avatar, but it only shows the first frame. Here is the animation:

Please help me to differentiate function "u" wrt t in following manner:

 

with(PDEtools):

-t*c[2]*k[2]+x*k[2]

(1)

DepVars := [F(xi), G(xi)]

[F(xi), G(xi)]

(2)

alias(F = F(xi), G = G(eta))

F, G

(3)

declare(F, G(xi))

F(xi)*`will now be displayed as`*F

 

G(xi)*`will now be displayed as`*G

(4)

u := a[0]+(F*a[1]+G*a[2]+kappa[1])/(mu[0]+mu[1]*(diff(F, xi))+mu[2]*(diff(G, eta)))+(F^2*a[3]+F*G*a[4]+G^2*a[5]+kappa[2])/(mu[0]+mu[1]*(diff(F, xi))+mu[2]*(diff(G, eta)))^2

a[0]+(a[1]*F+a[2]*G+kappa[1])/(mu[0]+mu[1]*(diff(F, xi))+mu[2]*(diff(G, eta)))+(a[3]*F^2+a[4]*F*G+a[5]*G^2+kappa[2])/(mu[0]+mu[1]*(diff(F, xi))+mu[2]*(diff(G, eta)))^2

(5)

xi := -t*c[1]*k[1]+x*k[1]; 1; eta := -t*c[2]*k[2]+x*k[2]

-t*c[1]*k[1]+x*k[1]

 

-t*c[2]*k[2]+x*k[2]

(6)

diff(u, t)

Error, invalid input: diff received -t*c[1]*k[1]+x*k[1], which is not valid for its 2nd argument

 

``

 

Download [1063]_Sub-equation_Method.mw

Regards

 

hi all,

How could I write long commands in Maple?

For instance: a long vector in Matlab could be written in this way:

A=[ 3, 4, 5, 6, 6, 45, 37...

5, 4, 67, 39, -967 ];

But what is that in Maple??? 

Hi all,

I drew a undirected graph using Maple

restart;
with(GraphTheory);
with(SpecialGraphs);
with(RandomGraphs);
G := Graph(undirected, {[{1, 2}, 4], {1, 4}, {2, 3}, {2, 5}, {3, 4}});
DrawGraph(G, style = circle);

I want to import this graph to picturebox or panel on C#, please help me!

Hi, i am trying to solve my PDEs with HPM method ,but i get strange errors.

first one is :Error, (in trig/reduce/reduce) Maple was unable to allocate enough memory to complete this computation.  Please see ?alloc,

but when i run my last function again,the error chages,let me show you.


restart;
lambda:=0.5;K[r]:=0.5;Sc:=0.5;Nb:=0.1;Nt:=0.1;Pr:=10;
                              0.5
                              0.5
                              0.5
                              0.1
                              0.1
                               10
> EQUATIONS;


equ1:=diff(f(eta),eta$4)-R*(diff(f(eta),eta)*diff(f(eta),eta$2)-f(eta)*diff(f(eta),eta$2))-2*K[r]*diff(g(eta),eta)=0;

equ2:=diff(g(eta),eta$2)-R*(diff(f(eta),eta)*g(eta)-f(eta)*diff(g(eta),eta))+2*K[r]*diff(f(eta),eta)=0;

equ3:=diff(theta(eta),eta$2)+Pr*R*f(eta)*diff(theta(eta),eta)+Nb*diff(phi(eta),eta)*diff(theta(eta),eta)+Nt*diff(theta(eta),eta)^2=0;

equ4:=diff(phi(eta),eta$2)+R*Sc*f(eta)*diff(phi(eta),eta)+diff(theta(eta),eta$2)*(Nt/Nb)=0;
/  d   /  d   /  d   /  d         \\\\     //  d         \ /  d  
|----- |----- |----- |----- f(eta)|||| - R ||----- f(eta)| |-----
\ deta \ deta \ deta \ deta       ////     \\ deta       / \ deta

   /  d         \\          /  d   /  d         \\\
   |----- f(eta)|| - f(eta) |----- |----- f(eta)|||
   \ deta       //          \ deta \ deta       ///

         /  d         \    
   - 1.0 |----- g(eta)| = 0
         \ deta       /    
     /  d   /  d         \\
     |----- |----- g(eta)||
     \ deta \ deta       //

            //  d         \                 /  d         \\
        - R ||----- f(eta)| g(eta) - f(eta) |----- g(eta)||
            \\ deta       /                 \ deta       //

              /  d         \    
        + 1.0 |----- f(eta)| = 0
              \ deta       /    
  /  d   /  d             \\               /  d             \
  |----- |----- theta(eta)|| + 10 R f(eta) |----- theta(eta)|
  \ deta \ deta           //               \ deta           /

           /  d           \ /  d             \
     + 0.1 |----- phi(eta)| |----- theta(eta)|
           \ deta         / \ deta           /

                             2    
           /  d             \     
     + 0.1 |----- theta(eta)|  = 0
           \ deta           /     
    /  d   /  d           \\                /  d           \
    |----- |----- phi(eta)|| + 0.5 R f(eta) |----- phi(eta)|
    \ deta \ deta         //                \ deta         /

                     /  d   /  d             \\    
       + 1.000000000 |----- |----- theta(eta)|| = 0
                     \ deta \ deta           //    
> BOUNDARY*CONDITIONS;


ics:=
f(0)=0,D(f)(0)=1,g(0)=0,theta(0)=1,phi(0)=1;
f(1)=lambda,D(f)(1)=0,g(1)=0,theta(1)=0,phi(1)=0;
   f(0) = 0, D(f)(0) = 1, g(0) = 0, theta(0) = 1, phi(0) = 1
  f(1) = 0.5, D(f)(1) = 0, g(1) = 0, theta(1) = 0, phi(1) = 0
> HPMs;


hpm1:=(1-p)*(diff(f(eta),eta$4)-2*K[r]*diff(g(eta),eta))+p*(diff(f(eta),eta$4)-R*(diff(f(eta),eta)*diff(f(eta),eta$2)-f(eta)*diff(f(eta),eta$2))-2*K[r]*diff(g(eta),eta))=0;

hpm2:=(1-p)*(diff(g(eta),eta$2)+2*K[r]*diff(f(eta),eta))+p*(diff(g(eta),eta$2)-R*(diff(f(eta),eta)*g(eta)-f(eta)*diff(g(eta),eta))+2*K[r]*diff(f(eta),eta))=0;

hpm3:=(1-p)*(diff(theta(eta),eta$2))+p*(diff(theta(eta),eta$2)+Pr*R*f(eta)*diff(theta(eta),eta)+Nb*diff(phi(eta),eta)*diff(theta(eta),eta)+Nt*diff(theta(eta),eta)^2)=0;

hpm4:=(1-p)*(diff(phi(eta),eta$2)+diff(theta(eta),eta$2)*(Nt/Nb))+p*(diff(phi(eta),eta$2)+R*Sc*f(eta)*diff(phi(eta),eta)+diff(theta(eta),eta$2)*(Nt/Nb))=0;

        //  d   /  d   /  d   /  d         \\\\
(1 - p) ||----- |----- |----- |----- f(eta)||||
        \\ deta \ deta \ deta \ deta       ////

         /  d         \\     //  d   /  d   /  d   /  d         \
   - 1.0 |----- g(eta)|| + p ||----- |----- |----- |----- f(eta)|
         \ deta       //     \\ deta \ deta \ deta \ deta       /

  \\\     //  d         \ /  d   /  d         \\
  ||| - R ||----- f(eta)| |----- |----- f(eta)||
  ///     \\ deta       / \ deta \ deta       //

            /  d   /  d         \\\       /  d         \\    
   - f(eta) |----- |----- f(eta)||| - 1.0 |----- g(eta)|| = 0
            \ deta \ deta       ///       \ deta       //    
        //  d   /  d         \\       /  d         \\     //  d  
(1 - p) ||----- |----- g(eta)|| + 1.0 |----- f(eta)|| + p ||-----
        \\ deta \ deta       //       \ deta       //     \\ deta

   /  d         \\
   |----- g(eta)||
   \ deta       //

       //  d         \                 /  d         \\
   - R ||----- f(eta)| g(eta) - f(eta) |----- g(eta)||
       \\ deta       /                 \ deta       //

         /  d         \\    
   + 1.0 |----- f(eta)|| = 0
         \ deta       //    
                                       /                         
        /  d   /  d             \\     |/  d   /  d             \
(1 - p) |----- |----- theta(eta)|| + p ||----- |----- theta(eta)|
        \ deta \ deta           //     \\ deta \ deta           /

  \               /  d             \
  | + 10 R f(eta) |----- theta(eta)|
  /               \ deta           /

         /  d           \ /  d             \
   + 0.1 |----- phi(eta)| |----- theta(eta)|
         \ deta         / \ deta           /

                           2\    
         /  d             \ |    
   + 0.1 |----- theta(eta)| | = 0
         \ deta           / /    
        //  d   /  d           \\
(1 - p) ||----- |----- phi(eta)||
        \\ deta \ deta         //

                 /  d   /  d             \\\     //  d   /  d   
   + 1.000000000 |----- |----- theta(eta)||| + p ||----- |-----
                 \ deta \ deta           ///     \\ deta \ deta

          \\                /  d           \
  phi(eta)|| + 0.5 R f(eta) |----- phi(eta)|
          //                \ deta         /

                 /  d   /  d             \\\    
   + 1.000000000 |----- |----- theta(eta)||| = 0
                 \ deta \ deta           ///    
f(eta)=sum(f[i](eta)*p^i,i=0..1);
                f(eta) = f[0](eta) + f[1](eta) p
g(eta)=sum(g[i](eta)*p^i,i=0..1);
                g(eta) = g[0](eta) + g[1](eta) p
theta(eta)=sum(theta[i](eta)*p^i,i=0..1);
          theta(eta) = theta[0](eta) + theta[1](eta) p
phi(eta)=sum(phi[i](eta)*p^i,i=0..1);
             phi(eta) = phi[0](eta) + phi[1](eta) p
> FORequ1;


A:=collect(expand(subs(f(eta)=f[0](eta)+f[1](eta)*p,g(eta)=g[0](eta)+g[1](eta)*p,hpm1)),p);
/      /  d            \ /  d   /  d            \\
|-1. R |----- f[1](eta)| |----- |----- f[1](eta)||
\      \ deta          / \ deta \ deta          //

                 /  d   /  d            \\\  3   /
   + R f[1](eta) |----- |----- f[1](eta)||| p  + |
                 \ deta \ deta          ///      \
      /  d            \ /  d   /  d            \\
-1. R |----- f[0](eta)| |----- |----- f[1](eta)||
      \ deta          / \ deta \ deta          //

          /  d            \ /  d   /  d            \\
   - 1. R |----- f[1](eta)| |----- |----- f[0](eta)||
          \ deta          / \ deta \ deta          //

                 /  d   /  d            \\
   + R f[0](eta) |----- |----- f[1](eta)||
                 \ deta \ deta          //

                 /  d   /  d            \\\  2   //  d   /  d   /
   + R f[1](eta) |----- |----- f[0](eta)||| p  + ||----- |----- |
                 \ deta \ deta          ///      \\ deta \ deta \

    d   /  d            \\\\       /  d            \
  ----- |----- f[1](eta)|||| - 1.0 |----- g[1](eta)|
   deta \ deta          ////       \ deta          /

          /  d            \ /  d   /  d            \\
   - 1. R |----- f[0](eta)| |----- |----- f[0](eta)||
          \ deta          / \ deta \ deta          //

                 /  d   /  d            \\\  
   + R f[0](eta) |----- |----- f[0](eta)||| p
                 \ deta \ deta          ///  

     /  d   /  d   /  d   /  d            \\\\
   + |----- |----- |----- |----- f[0](eta)||||
     \ deta \ deta \ deta \ deta          ////

         /  d            \    
   - 1.0 |----- g[0](eta)| = 0
         \ deta          /    
A1:=diff(f[0](eta),eta$4)-2*K[r]*(diff(g[0](eta),eta))=0;
A2:=diff(f[1](eta),eta$4)-2*K[r]*(diff(g[1](eta),eta))-R*(diff(f[0](eta),eta))*(diff(f[0](eta),eta$2))+R*f[0](eta)*(diff(f[0](eta),eta$2))=0;
/  d   /  d   /  d   /  d            \\\\       /  d            \   
|----- |----- |----- |----- f[0](eta)|||| - 1.0 |----- g[0](eta)| =
\ deta \ deta \ deta \ deta          ////       \ deta          /   

  0
/  d   /  d   /  d   /  d            \\\\       /  d            \
|----- |----- |----- |----- f[1](eta)|||| - 1.0 |----- g[1](eta)|
\ deta \ deta \ deta \ deta          ////       \ deta          /

       /  d            \ /  d   /  d            \\
   - R |----- f[0](eta)| |----- |----- f[0](eta)||
       \ deta          / \ deta \ deta          //

                 /  d   /  d            \\    
   + R f[0](eta) |----- |----- f[0](eta)|| = 0
                 \ deta \ deta          //    
icsA1:=f[0](0)=0,D(f[0])(0)=1,g[0](0)=0,f[0](1)=lambda,D(f[0])(1)=0,g[0](1)=0;
icsA2:=f[1](0)=0,D(f[1])(0)=0,g[1](0)=0,f[1](1)=0,D(f[1])(1)=0,g[1](1)=0;
   f[0](0) = 0, D(f[0])(0) = 1, g[0](0) = 0, f[0](1) = 0.5,

     D(f[0])(1) = 0, g[0](1) = 0
    f[1](0) = 0, D(f[1])(0) = 0, g[1](0) = 0, f[1](1) = 0,

      D(f[1])(1) = 0, g[1](1) = 0
>
FORequ2;


B:=collect(expand(subs(f(eta)=f[0](eta)+f[1](eta)*p,g(eta)=g[0](eta)+g[1](eta)*p,hpm2)),p);
/      /  d            \          
|-1. R |----- f[1](eta)| g[1](eta)
\      \ deta          /          

                 /  d            \\  3   /
   + R f[1](eta) |----- g[1](eta)|| p  + |
                 \ deta          //      \
      /  d            \          
-1. R |----- f[0](eta)| g[1](eta)
      \ deta          /          

          /  d            \          
   - 1. R |----- f[1](eta)| g[0](eta)
          \ deta          /          

                 /  d            \
   + R f[0](eta) |----- g[1](eta)|
                 \ deta          /

                 /  d            \\  2   //  d   /  d            
   + R f[1](eta) |----- g[0](eta)|| p  + ||----- |----- g[1](eta)
                 \ deta          //      \\ deta \ deta          

  \\       /  d            \        /  d            \          
  || + 1.0 |----- f[1](eta)| - 1. R |----- f[0](eta)| g[0](eta)
  //       \ deta          /        \ deta          /          

                 /  d            \\     /  d   /  d            \\
   + R f[0](eta) |----- g[0](eta)|| p + |----- |----- g[0](eta)||
                 \ deta          //     \ deta \ deta          //

         /  d            \    
   + 1.0 |----- f[0](eta)| = 0
         \ deta          /    
B1:=diff(g[0](eta),eta$2)+2*K[r]*(diff(f[0](eta),eta))=0;
B2:=diff(g[1](eta),eta$2)+2*K[r]*(diff(f[1](eta),eta))-R*(diff(f[0](eta),eta))*g[0](eta)+R*f[0](eta)*(diff(g[0](eta),eta))=0;
     /  d   /  d            \\       /  d            \    
     |----- |----- g[0](eta)|| + 1.0 |----- f[0](eta)| = 0
     \ deta \ deta          //       \ deta          /    
       /  d   /  d            \\       /  d            \
       |----- |----- g[1](eta)|| + 1.0 |----- f[1](eta)|
       \ deta \ deta          //       \ deta          /

              /  d            \          
          - R |----- f[0](eta)| g[0](eta)
              \ deta          /          

                        /  d            \    
          + R f[0](eta) |----- g[0](eta)| = 0
                        \ deta          /    
icsB1:=f[0](0)=0,D(f[0])(0)=1,g[0](0)=0,f[0](1)=lambda,D(f[0])(1)=0,g[0](1)=0;
icsB2:=f[1](0)=0,D(f[1])(0)=0,g[1](0)=0,f[1](1)=0,D(f[1])(1)=0,g[1](1)=0;
   f[0](0) = 0, D(f[0])(0) = 1, g[0](0) = 0, f[0](1) = 0.5,

     D(f[0])(1) = 0, g[0](1) = 0
    f[1](0) = 0, D(f[1])(0) = 0, g[1](0) = 0, f[1](1) = 0,

      D(f[1])(1) = 0, g[1](1) = 0
> FORequ3;


C:=collect(expand(subs(theta(eta)=theta[0](eta)+theta[1](eta)*p,phi(eta)=phi[0](eta)+phi[1](eta)*p,f(eta)=f[0](eta)+f[1](eta)*p,hpm3)),p);
 /                                     
 |                /  d                \
 |10. R f[1](eta) |----- theta[1](eta)|
 \                \ deta              /

          /  d              \ /  d                \
    + 0.1 |----- phi[1](eta)| |----- theta[1](eta)|
          \ deta            / \ deta              /

                               2\                              
          /  d                \ |  3   /                /  d   
    + 0.1 |----- theta[1](eta)| | p  + |10. R f[0](eta) |-----
          \ deta              / /      \                \ deta

                \                   /  d                \
   theta[1](eta)| + 10. R f[1](eta) |----- theta[0](eta)|
                /                   \ deta              /

          /  d              \ /  d                \
    + 0.1 |----- phi[0](eta)| |----- theta[1](eta)|
          \ deta            / \ deta              /

          /  d              \ /  d                \
    + 0.1 |----- phi[1](eta)| |----- theta[0](eta)|
          \ deta            / \ deta              /

                                                            /
          /  d                \ /  d                \\  2   |/
    + 0.2 |----- theta[0](eta)| |----- theta[1](eta)|| p  + ||
          \ deta              / \ deta              //      \\

     d   /  d                \\
   ----- |----- theta[1](eta)||
    deta \ deta              //

                      /  d                \
    + 10. R f[0](eta) |----- theta[0](eta)|
                      \ deta              /

          /  d              \ /  d                \
    + 0.1 |----- phi[0](eta)| |----- theta[0](eta)|
          \ deta            / \ deta              /

                               2\  
          /  d                \ |  
    + 0.1 |----- theta[0](eta)| | p
          \ deta              / /  

      /  d   /  d                \\    
    + |----- |----- theta[0](eta)|| = 0
      \ deta \ deta              //    
C1:=diff(theta[0](eta),eta$2)=0;
C2:=diff(theta[1](eta), eta, eta)+Pr*R*f[0](eta)*(diff(theta[0](eta), eta))+Nb*(diff(phi[0](eta), eta))*(diff(theta[0](eta), eta))+Nt*(diff(theta[0](eta), eta))^2=0;
                  d   /  d                \    
                ----- |----- theta[0](eta)| = 0
                 deta \ deta              /    
       /  d   /  d                \\
       |----- |----- theta[1](eta)||
       \ deta \ deta              //

                           /  d                \
          + 10 R f[0](eta) |----- theta[0](eta)|
                           \ deta              /

                /  d              \ /  d                \
          + 0.1 |----- phi[0](eta)| |----- theta[0](eta)|
                \ deta            / \ deta              /

                                     2    
                /  d                \     
          + 0.1 |----- theta[0](eta)|  = 0
                \ deta              /     
icsC1:=theta[0](0)=1,theta[0](1)=0;
icsC2:=theta[1](0)=0,theta[1](1)=0,phi[0](0)=0,phi[0](1)=0;
                theta[0](0) = 1, theta[0](1) = 0
 theta[1](0) = 0, theta[1](1) = 0, phi[0](0) = 0, phi[0](1) = 0
> FORequ4;


E:=collect(expand(subs(theta(eta)=theta[0](eta)+theta[1](eta)*p,phi(eta)=phi[0](eta)+phi[1](eta)*p,f(eta)=f[0](eta)+f[1](eta)*p,hpm4)),p);
                 3 /  d              \   /                /  d   
0.5 R f[1](eta) p  |----- phi[1](eta)| + |0.5 R f[0](eta) |-----
                   \ deta            /   \                \ deta

             \                   /  d              \\  2   //
  phi[1](eta)| + 0.5 R f[1](eta) |----- phi[0](eta)|| p  + ||
             /                   \ deta            //      \\

    d   /  d              \\
  ----- |----- phi[1](eta)||
   deta \ deta            //

                 /  d   /  d                \\
   + 1.000000000 |----- |----- theta[1](eta)||
                 \ deta \ deta              //

                     /  d              \\  
   + 0.5 R f[0](eta) |----- phi[0](eta)|| p
                     \ deta            //  

     /  d   /  d              \\
   + |----- |----- phi[0](eta)||
     \ deta \ deta            //

                 /  d   /  d                \\    
   + 1.000000000 |----- |----- theta[0](eta)|| = 0
                 \ deta \ deta              //    
E1:=diff(phi[0](eta),eta$2)+Nt*(diff(theta[0](eta),eta$2))/Nb=0;
E2:=diff(phi[1](eta),eta$2)+Nt*(diff(theta[1](eta),eta$2))/Nb+R*Sc*f[0](eta)*(diff(phi[0](eta),eta))=0;
       /  d   /  d              \\
       |----- |----- phi[0](eta)||
       \ deta \ deta            //

                        /  d   /  d                \\    
          + 1.000000000 |----- |----- theta[0](eta)|| = 0
                        \ deta \ deta              //    
         /  d   /  d              \\
         |----- |----- phi[1](eta)||
         \ deta \ deta            //

                          /  d   /  d                \\
            + 1.000000000 |----- |----- theta[1](eta)||
                          \ deta \ deta              //

                              /  d              \    
            + 0.5 R f[0](eta) |----- phi[0](eta)| = 0
                              \ deta            /    
icsE1:=theta[0](0)=1,theta[0](1)=0,phi[0](0)=1,phi[0](1)=0;
icsE2:=theta[1](0)=0,theta[1](1)=0,phi[1](0)=0,phi[1](1)=0;
 theta[0](0) = 1, theta[0](1) = 0, phi[0](0) = 1, phi[0](1) = 0
 theta[1](0) = 0, theta[1](1) = 0, phi[1](0) = 0, phi[1](1) = 0
       
theta[0](eta) = -(152675527/100000000)*eta+1;
                                152675527        
              theta[0](eta) = - --------- eta + 1
                                100000000        
U:=f[1](eta)=0;
                         f[1](eta) = 0
Dsolve(A1,B1,icsA1,icsB1);
                  Dsolve(A1, B1, icsA1, icsB1)


sys:={ diff(g[0](eta), eta, eta)+1.0*(diff(f[0](eta), eta)) = 0, diff(f[0](eta), eta, eta, eta, eta)-1.0*(diff(g[0](eta), eta)) = 0};
    //  d   /  d   /  d   /  d            \\\\
   { |----- |----- |----- |----- f[0](eta)||||
    \\ deta \ deta \ deta \ deta          ////

            /  d            \      
      - 1.0 |----- g[0](eta)| = 0,
            \ deta          /      

     /  d   /  d            \\       /  d            \    \
     |----- |----- g[0](eta)|| + 1.0 |----- f[0](eta)| = 0 }
     \ deta \ deta          //       \ deta          /    /
IC_1:={ f[0](0) = 0, (D(f[0]))(0) = 1, g[0](0) = 0, f[0](1) = .5, (D(f[0]))(1) = 0, g[0](1) = 0,f[0](0) = 0, (D(f[0]))(0) = 1, g[0](0) = 0, f[0](1) = .5, (D(f[0]))(1) = 0, g[0](1) = 0};
    {f[0](0) = 0, f[0](1) = 0.5, g[0](0) = 0, g[0](1) = 0,

      D(f[0])(0) = 1, D(f[0])(1) = 0}
ans1 := combine(dsolve(sys union IC_1,{f[0](eta),g[0](eta)}),trig);
Error, (in dsolve) expecting an ODE or a set or list of ODEs. Received `union`(IC_1, sys)
>
 

using worksheet mode, is there a way to automatically color any comments after (#) with a different color than the default red?

I have been using Maple for years and did not need to significantly document or comment on my worksheets before because I only needed to share my worksheets with close collegues who have a lot of experience with Maple too. However, now I need to share my code with a general audience that might not be a Maple user. So I need to add enough comments after each line, and I have been manually changing the color of comments after the # to green to give the reader the indication that this is a comment and not part of the code, like this for example:

 

restart;

f:=(x,y)->sin(sqrt(x^2+y^2))/sqrt(x^2+y^2); # Define f as a function of the variables x and y

proc (x, y) options operator, arrow; sin(sqrt(x^2+y^2))/sqrt(x^2+y^2) end proc

(1)

df:=(x,y)->eval(diff(f(a,y),a),a=x); # Define df as the partial derivative of f with respect to x

proc (x, y) options operator, arrow; eval(diff(f(a, y), a), a = x) end proc

(2)

df(1,3); # Evaluate df at x=1, y=3

(1/10)*cos(10^(1/2))-(1/100)*sin(10^(1/2))*10^(1/2)

(3)

 

 

Download Worksheet-coloring-comments.mw



It would be great if Maple can automatically color comments like typical editors do. Is this possible? if not, does anyone have an advice for a nice easy way to add proper documentation to worksheets?

Hello everybody.

I'm trying to obtain the numerical solution of a differential equation. Unfortunately, this prove to be quite challenging. I was able to obtain a rough solution using mathematica, but nothing more. The function is strictly increasing (for sure).

Any help is really REALLY appreciated, thanks!

 

``

deq1 := 1/(b-f(b)) = (2*(3-(1-f(b)*(diff(f(b), b, b)))/((diff(f(b), b))*(diff(f(b), b)))))/(1-2*(b-(1-f(b))/(diff(f(b), b))))

1/(b-f(b)) = 2*(3-(1-f(b)*(diff(diff(f(b), b), b)))/(diff(f(b), b))^2)/(1-2*b+2*(1-f(b))/(diff(f(b), b)))

(1)

ic1 := eval(f(b), b = 3/8) = 0, eval(f(b), b = 1/2) = 1/2

f(3/8) = 0, f(1/2) = 1/2

(2)

digits := 3

3

(3)

dsol1 := dsolve({deq1, ic1}, method = bvp[middefer], numeric, range = 3/8 .. 1/2)

Error, (in dsolve/numeric/bvp) initial Newton iteration is not converging

 

``

 

Download diffeqn.mw

Hi everybody

In the following attached file that is a simple code, 2 problems occur:

1- The values of Lc1 and Lc2 are specified in the third and fourth lines of the code. when I execute Pcl10, Maple does not replace Lc1 with its value that is 0.5*L. This problem does not happen for Tcl10 and Tcl21. Why Maple does not replace Lc1 with its value that is specified at the start of the worksheet?

2- In the last line, when I try to simplify the Tcl10, Maple returns an error, while for example the first element i.e. Tcl20(1,1) can be simplified as: cos(thet1+thet2). What is the source of error?

 

Thanks in advance

P1.mw

I had another problem whereby I need to shaded a region between y=ln(x+2) , y-axis and y=-1 to y= 2. What is the suitable comand I shall apply ( Maple 18)


Trying to build a block matrix. Having a problem getting the syntax correct. Can't add in the predefind matrices to the lower band.

restart

with(LinearAlgebra):

interface(displayprecision = 5)

5

(1)

interface(rtablesize = 81)

10

(2)

S := 2

2

(3)

dmax := 7

7

(4)

CCnew0 := Matrix(2, 2, {(1, 1) = 336750255587/3769550688757, (1, 2) = -14853552191797/1696297809940650, (2, 1) = 665096091/76929605893, (2, 2) = 1328910382993/11539440883950})

CCnew0 := Matrix(2, 2, {(1, 1) = 336750255587/3769550688757, (1, 2) = -14853552191797/1696297809940650, (2, 1) = 665096091/76929605893, (2, 2) = 1328910382993/11539440883950})

(5)

CCnew1 := Matrix(2, 2, {(1, 1) = 49655436033349/56543260331355, (1, 2) = -75647656451147/1413581508283875, (2, 1) = 29849106694/384648029465, (2, 2) = 10591394356218/9616200736625})

CCnew1 := Matrix(2, 2, {(1, 1) = 49655436033349/56543260331355, (1, 2) = -75647656451147/1413581508283875, (2, 1) = 29849106694/384648029465, (2, 2) = 10591394356218/9616200736625})

(6)

CCnew2 := Matrix(2, 2, {(1, 1) = 299962512141959/80776086187650, (1, 2) = -1231816081155781/8481489049703250, (2, 1) = 155175716729/549497184950, (2, 2) = 260449617208489/57697204419750})

CCnew2 := Matrix(2, 2, {(1, 1) = 299962512141959/80776086187650, (1, 2) = -1231816081155781/8481489049703250, (2, 1) = 155175716729/549497184950, (2, 2) = 260449617208489/57697204419750})

(7)

CCnew3 := Matrix(2, 2, {(1, 1) = 50445725001719/5769720441975, (1, 2) = -9065291388901/40388043093825, (2, 1) = 21111399914/39249798925, (2, 2) = 2819495262394/274748592475})

CCnew3 := Matrix(2, 2, {(1, 1) = 50445725001719/5769720441975, (1, 2) = -9065291388901/40388043093825, (2, 1) = 21111399914/39249798925, (2, 2) = 2819495262394/274748592475})

(8)

CCnew4 := Matrix(2, 2, {(1, 1) = 142685068141037/11539440883950, (1, 2) = -116560067351321/565432603313550, (2, 1) = 44654487647/78499597850, (2, 2) = 53741323977599/3846480294650})

CCnew4 := Matrix(2, 2, {(1, 1) = 142685068141037/11539440883950, (1, 2) = -116560067351321/565432603313550, (2, 1) = 44654487647/78499597850, (2, 2) = 53741323977599/3846480294650})

(9)

CCnew5 := Matrix(2, 2, {(1, 1) = 60560690824604/5769720441975, (1, 2) = -88774498025543/848148904970325, (2, 1) = 12484906049/39249798925, (2, 2) = 65745570806567/5769720441975})

CCnew5 := Matrix(2, 2, {(1, 1) = 60560690824604/5769720441975, (1, 2) = -88774498025543/848148904970325, (2, 1) = 12484906049/39249798925, (2, 2) = 65745570806567/5769720441975})

(10)

CCnew6 := Matrix(2, 2, {(1, 1) = 20398649489879/4121228887125, (1, 2) = -5446073753219/242328258562950, (2, 1) = 14465459393/196248994625, (2, 2) = 8502096238511/1648491554850})

CCnew6 := Matrix(2, 2, {(1, 1) = 20398649489879/4121228887125, (1, 2) = -5446073753219/242328258562950, (2, 1) = 14465459393/196248994625, (2, 2) = 8502096238511/1648491554850})

(11)

S*dmax

14

(12)

M1 := Matrix(S*dmax, S*dmax, [Matrix(S*(dmax-1), S), Matrix(S*(dmax-1), shape = identity), Matrix(S, S*dmax, [seq(-CCnew || n, n = 0 .. dmax-1)])])

Error, (in Matrix) this entry is too tall or too short: Matrix(2, 14, {(1, 1) = -336750255587/3769550688757, (1, 2) = 14853552191797/1696297809940650, (1, 3) = -49655436033349/56543260331355, (1, 4) = 75647656451147/1413581508283875, (1, 5) = -299962512141959/80776086187650, (1, 6) = 1231816081155781/8481489049703250, (1, 7) = -50445725001719/5769720441975, (1, 8) = 9065291388901/40388043093825, (1, 9) = -142685068141037/11539440883950, (1, 10) = 116560067351321/565432603313550, (1, 11) = -60560690824604/5769720441975, (1, 12) = 88774498025543/848148904970325, (1, 13) = -20398649489879/4121228887125, (1, 14) = 5446073753219/242328258562950, ...

 

M2 := Matrix(S*dmax, S*dmax, [Matrix(S*(dmax-1), S), Matrix(S*(dmax-1), shape = identity)])

M2 := Matrix(14, 14, {(1, 1) = 0, (1, 2) = 0, (1, 3) = 1, (1, 4) = 0, (1, 5) = 0, (1, 6) = 0, (1, 7) = 0, (1, 8) = 0, (1, 9) = 0, (1, 10) = 0, (1, 11) = 0, (1, 12) = 0, (1, 13) = 0, (1, 14) = 0, (2, 1) = 0, (2, 2) = 0, (2, 3) = 0, (2, 4) = 1, (2, 5) = 0, (2, 6) = 0, (2, 7) = 0, (2, 8) = 0, (2, 9) = 0, (2, 10) = 0, (2, 11) = 0, (2, 12) = 0, (2, 13) = 0, (2, 14) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 0, (3, 4) = 0, (3, 5) = 1, (3, 6) = 0, (3, 7) = 0, (3, 8) = 0, (3, 9) = 0, (3, 10) = 0, (3, 11) = 0, (3, 12) = 0, (3, 13) = 0, (3, 14) = 0, (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = 0, (4, 5) = 0, (4, 6) = 1, (4, 7) = 0, (4, 8) = 0, (4, 9) = 0, (4, 10) = 0, (4, 11) = 0, (4, 12) = 0, (4, 13) = 0, (4, 14) = 0, (5, 1) = 0, (5, 2) = 0, (5, 3) = 0, (5, 4) = 0, (5, 5) = 0, (5, 6) = 0, (5, 7) = 1, (5, 8) = 0, (5, 9) = 0, (5, 10) = 0, (5, 11) = 0, (5, 12) = 0, (5, 13) = 0, (5, 14) = 0, (6, 1) = 0, (6, 2) = 0, (6, 3) = 0, (6, 4) = 0, (6, 5) = 0, (6, 6) = 0, (6, 7) = 0, (6, 8) = 1, (6, 9) = 0, (6, 10) = 0, (6, 11) = 0, (6, 12) = 0, (6, 13) = 0, (6, 14) = 0, (7, 1) = 0, (7, 2) = 0, (7, 3) = 0, (7, 4) = 0, (7, 5) = 0, (7, 6) = 0, (7, 7) = 0, (7, 8) = 0, (7, 9) = 1, (7, 10) = 0, (7, 11) = 0, (7, 12) = 0, (7, 13) = 0, (7, 14) = 0, (8, 1) = 0, (8, 2) = 0, (8, 3) = 0, (8, 4) = 0, (8, 5) = 0, (8, 6) = 0, (8, 7) = 0, (8, 8) = 0, (8, 9) = 0, (8, 10) = 1, (8, 11) = 0, (8, 12) = 0, (8, 13) = 0, (8, 14) = 0, (9, 1) = 0, (9, 2) = 0, (9, 3) = 0, (9, 4) = 0, (9, 5) = 0, (9, 6) = 0, (9, 7) = 0, (9, 8) = 0, (9, 9) = 0, (9, 10) = 0, (9, 11) = 1, (9, 12) = 0, (9, 13) = 0, (9, 14) = 0, (10, 1) = 0, (10, 2) = 0, (10, 3) = 0, (10, 4) = 0, (10, 5) = 0, (10, 6) = 0, (10, 7) = 0, (10, 8) = 0, (10, 9) = 0, (10, 10) = 0, (10, 11) = 0, (10, 12) = 1, (10, 13) = 0, (10, 14) = 0, (11, 1) = 0, (11, 2) = 0, (11, 3) = 0, (11, 4) = 0, (11, 5) = 0, (11, 6) = 0, (11, 7) = 0, (11, 8) = 0, (11, 9) = 0, (11, 10) = 0, (11, 11) = 0, (11, 12) = 0, (11, 13) = 1, (11, 14) = 0, (12, 1) = 0, (12, 2) = 0, (12, 3) = 0, (12, 4) = 0, (12, 5) = 0, (12, 6) = 0, (12, 7) = 0, (12, 8) = 0, (12, 9) = 0, (12, 10) = 0, (12, 11) = 0, (12, 12) = 0, (12, 13) = 0, (12, 14) = 1, (13, 1) = 0, (13, 2) = 0, (13, 3) = 0, (13, 4) = 0, (13, 5) = 0, (13, 6) = 0, (13, 7) = 0, (13, 8) = 0, (13, 9) = 0, (13, 10) = 0, (13, 11) = 0, (13, 12) = 0, (13, 13) = 0, (13, 14) = 0, (14, 1) = 0, (14, 2) = 0, (14, 3) = 0, (14, 4) = 0, (14, 5) = 0, (14, 6) = 0, (14, 7) = 0, (14, 8) = 0, (14, 9) = 0, (14, 10) = 0, (14, 11) = 0, (14, 12) = 0, (14, 13) = 0, (14, 14) = 0})

(13)

lowerband := Matrix(S, S*dmax, [seq(-evalf(CCnew || n), n = 0 .. dmax-1)])

lowerband := Matrix(2, 14, {(1, 1) = -0.893343e-1, (1, 2) = 0.875645e-2, (1, 3) = -.878185, (1, 4) = 0.535149e-1, (1, 5) = -3.71351, (1, 6) = .145236, (1, 7) = -8.74318, (1, 8) = .224455, (1, 9) = -12.36499, (1, 10) = .206143, (1, 11) = -10.49630, (1, 12) = .104669, (1, 13) = -4.94965, (1, 14) = 0.224740e-1, (2, 1) = -0.864552e-2, (2, 2) = -.115162, (2, 3) = -0.776011e-1, (2, 4) = -1.10141, (2, 5) = -.282396, (2, 6) = -4.51408, (2, 7) = -.537873, (2, 8) = -10.26209, (2, 9) = -.568850, (2, 10) = -13.97156, (2, 11) = -.318088, (2, 12) = -11.39493, (2, 13) = -0.737097e-1, (2, 14) = -5.15750})

(14)

M3 := Matrix(S*dmax, S*dmax, [Matrix(S*(dmax-1), S), Matrix(S*(dmax-1), shape = identity), lowerband])

Error, (in Matrix) this entry is too tall or too short: Matrix(2, 14, {(1, 1) = -0.8933432215e-1, (1, 2) = 0.8756453086e-2, (1, 3) = -.8781848755, (1, 4) = 0.5351488825e-1, (1, 5) = -3.713506389, (1, 6) = .1452358276, (1, 7) = -8.743183575, (1, 8) = .224454831, (1, 9) = -12.36498974, (1, 10) = .2061431666, (1, 11) = -10.49629552, (1, 12) = .1046685287, (1, 13) = -4.949652167, (1, 14) = 0.2247395242e-1, (2, 1) = -0.8645515381e-2, (2, 2) = -.1151624586, (2, 3) = -0.7760109089e-1, (2, 4) = -1.101411529, (2, 5) = -.2823958356, (2, 6) = -4.514076892, (2, 7) = -.537872817, (2, 8) = -10.26209174, (2, 9) = -.5688498906, (2, 10) = -13.97155838, (2, 1...

 

``


Download Test_Block_matrix.mw

restart

with(LinearAlgebra):

interface(displayprecision = 5)

5

(1)

interface(rtablesize = 81)

10

(2)

S := 2

2

(3)

dmax := 7

7

(4)

CCnew0 := Matrix(2, 2, {(1, 1) = 336750255587/3769550688757, (1, 2) = -14853552191797/1696297809940650, (2, 1) = 665096091/76929605893, (2, 2) = 1328910382993/11539440883950})

CCnew0 := Matrix(2, 2, {(1, 1) = 336750255587/3769550688757, (1, 2) = -14853552191797/1696297809940650, (2, 1) = 665096091/76929605893, (2, 2) = 1328910382993/11539440883950})

(5)

CCnew1 := Matrix(2, 2, {(1, 1) = 49655436033349/56543260331355, (1, 2) = -75647656451147/1413581508283875, (2, 1) = 29849106694/384648029465, (2, 2) = 10591394356218/9616200736625})

CCnew1 := Matrix(2, 2, {(1, 1) = 49655436033349/56543260331355, (1, 2) = -75647656451147/1413581508283875, (2, 1) = 29849106694/384648029465, (2, 2) = 10591394356218/9616200736625})

(6)

CCnew2 := Matrix(2, 2, {(1, 1) = 299962512141959/80776086187650, (1, 2) = -1231816081155781/8481489049703250, (2, 1) = 155175716729/549497184950, (2, 2) = 260449617208489/57697204419750})

CCnew2 := Matrix(2, 2, {(1, 1) = 299962512141959/80776086187650, (1, 2) = -1231816081155781/8481489049703250, (2, 1) = 155175716729/549497184950, (2, 2) = 260449617208489/57697204419750})

(7)

CCnew3 := Matrix(2, 2, {(1, 1) = 50445725001719/5769720441975, (1, 2) = -9065291388901/40388043093825, (2, 1) = 21111399914/39249798925, (2, 2) = 2819495262394/274748592475})

CCnew3 := Matrix(2, 2, {(1, 1) = 50445725001719/5769720441975, (1, 2) = -9065291388901/40388043093825, (2, 1) = 21111399914/39249798925, (2, 2) = 2819495262394/274748592475})

(8)

CCnew4 := Matrix(2, 2, {(1, 1) = 142685068141037/11539440883950, (1, 2) = -116560067351321/565432603313550, (2, 1) = 44654487647/78499597850, (2, 2) = 53741323977599/3846480294650})

CCnew4 := Matrix(2, 2, {(1, 1) = 142685068141037/11539440883950, (1, 2) = -116560067351321/565432603313550, (2, 1) = 44654487647/78499597850, (2, 2) = 53741323977599/3846480294650})

(9)

CCnew5 := Matrix(2, 2, {(1, 1) = 60560690824604/5769720441975, (1, 2) = -88774498025543/848148904970325, (2, 1) = 12484906049/39249798925, (2, 2) = 65745570806567/5769720441975})

CCnew5 := Matrix(2, 2, {(1, 1) = 60560690824604/5769720441975, (1, 2) = -88774498025543/848148904970325, (2, 1) = 12484906049/39249798925, (2, 2) = 65745570806567/5769720441975})

(10)

CCnew6 := Matrix(2, 2, {(1, 1) = 20398649489879/4121228887125, (1, 2) = -5446073753219/242328258562950, (2, 1) = 14465459393/196248994625, (2, 2) = 8502096238511/1648491554850})

CCnew6 := Matrix(2, 2, {(1, 1) = 20398649489879/4121228887125, (1, 2) = -5446073753219/242328258562950, (2, 1) = 14465459393/196248994625, (2, 2) = 8502096238511/1648491554850})

(11)

S*dmax

14

(12)

M1 := Matrix(S*dmax, S*dmax, [Matrix(S*(dmax-1), S), Matrix(S*(dmax-1), shape = identity), Matrix(S, S*dmax, [seq(-CCnew || n, n = 0 .. dmax-1)])])

Error, (in Matrix) this entry is too tall or too short: Matrix(2, 14, {(1, 1) = -336750255587/3769550688757, (1, 2) = 14853552191797/1696297809940650, (1, 3) = -49655436033349/56543260331355, (1, 4) = 75647656451147/1413581508283875, (1, 5) = -299962512141959/80776086187650, (1, 6) = 1231816081155781/8481489049703250, (1, 7) = -50445725001719/5769720441975, (1, 8) = 9065291388901/40388043093825, (1, 9) = -142685068141037/11539440883950, (1, 10) = 116560067351321/565432603313550, (1, 11) = -60560690824604/5769720441975, (1, 12) = 88774498025543/848148904970325, (1, 13) = -20398649489879/4121228887125, (1, 14) = 5446073753219/242328258562950, ...

 

M2 := Matrix(S*dmax, S*dmax, [Matrix(S*(dmax-1), S), Matrix(S*(dmax-1), shape = identity)])

M2 := Matrix(14, 14, {(1, 1) = 0, (1, 2) = 0, (1, 3) = 1, (1, 4) = 0, (1, 5) = 0, (1, 6) = 0, (1, 7) = 0, (1, 8) = 0, (1, 9) = 0, (1, 10) = 0, (1, 11) = 0, (1, 12) = 0, (1, 13) = 0, (1, 14) = 0, (2, 1) = 0, (2, 2) = 0, (2, 3) = 0, (2, 4) = 1, (2, 5) = 0, (2, 6) = 0, (2, 7) = 0, (2, 8) = 0, (2, 9) = 0, (2, 10) = 0, (2, 11) = 0, (2, 12) = 0, (2, 13) = 0, (2, 14) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 0, (3, 4) = 0, (3, 5) = 1, (3, 6) = 0, (3, 7) = 0, (3, 8) = 0, (3, 9) = 0, (3, 10) = 0, (3, 11) = 0, (3, 12) = 0, (3, 13) = 0, (3, 14) = 0, (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = 0, (4, 5) = 0, (4, 6) = 1, (4, 7) = 0, (4, 8) = 0, (4, 9) = 0, (4, 10) = 0, (4, 11) = 0, (4, 12) = 0, (4, 13) = 0, (4, 14) = 0, (5, 1) = 0, (5, 2) = 0, (5, 3) = 0, (5, 4) = 0, (5, 5) = 0, (5, 6) = 0, (5, 7) = 1, (5, 8) = 0, (5, 9) = 0, (5, 10) = 0, (5, 11) = 0, (5, 12) = 0, (5, 13) = 0, (5, 14) = 0, (6, 1) = 0, (6, 2) = 0, (6, 3) = 0, (6, 4) = 0, (6, 5) = 0, (6, 6) = 0, (6, 7) = 0, (6, 8) = 1, (6, 9) = 0, (6, 10) = 0, (6, 11) = 0, (6, 12) = 0, (6, 13) = 0, (6, 14) = 0, (7, 1) = 0, (7, 2) = 0, (7, 3) = 0, (7, 4) = 0, (7, 5) = 0, (7, 6) = 0, (7, 7) = 0, (7, 8) = 0, (7, 9) = 1, (7, 10) = 0, (7, 11) = 0, (7, 12) = 0, (7, 13) = 0, (7, 14) = 0, (8, 1) = 0, (8, 2) = 0, (8, 3) = 0, (8, 4) = 0, (8, 5) = 0, (8, 6) = 0, (8, 7) = 0, (8, 8) = 0, (8, 9) = 0, (8, 10) = 1, (8, 11) = 0, (8, 12) = 0, (8, 13) = 0, (8, 14) = 0, (9, 1) = 0, (9, 2) = 0, (9, 3) = 0, (9, 4) = 0, (9, 5) = 0, (9, 6) = 0, (9, 7) = 0, (9, 8) = 0, (9, 9) = 0, (9, 10) = 0, (9, 11) = 1, (9, 12) = 0, (9, 13) = 0, (9, 14) = 0, (10, 1) = 0, (10, 2) = 0, (10, 3) = 0, (10, 4) = 0, (10, 5) = 0, (10, 6) = 0, (10, 7) = 0, (10, 8) = 0, (10, 9) = 0, (10, 10) = 0, (10, 11) = 0, (10, 12) = 1, (10, 13) = 0, (10, 14) = 0, (11, 1) = 0, (11, 2) = 0, (11, 3) = 0, (11, 4) = 0, (11, 5) = 0, (11, 6) = 0, (11, 7) = 0, (11, 8) = 0, (11, 9) = 0, (11, 10) = 0, (11, 11) = 0, (11, 12) = 0, (11, 13) = 1, (11, 14) = 0, (12, 1) = 0, (12, 2) = 0, (12, 3) = 0, (12, 4) = 0, (12, 5) = 0, (12, 6) = 0, (12, 7) = 0, (12, 8) = 0, (12, 9) = 0, (12, 10) = 0, (12, 11) = 0, (12, 12) = 0, (12, 13) = 0, (12, 14) = 1, (13, 1) = 0, (13, 2) = 0, (13, 3) = 0, (13, 4) = 0, (13, 5) = 0, (13, 6) = 0, (13, 7) = 0, (13, 8) = 0, (13, 9) = 0, (13, 10) = 0, (13, 11) = 0, (13, 12) = 0, (13, 13) = 0, (13, 14) = 0, (14, 1) = 0, (14, 2) = 0, (14, 3) = 0, (14, 4) = 0, (14, 5) = 0, (14, 6) = 0, (14, 7) = 0, (14, 8) = 0, (14, 9) = 0, (14, 10) = 0, (14, 11) = 0, (14, 12) = 0, (14, 13) = 0, (14, 14) = 0})

(13)

lowerband := Matrix(S, S*dmax, [seq(-evalf(CCnew || n), n = 0 .. dmax-1)])

lowerband := Matrix(2, 14, {(1, 1) = -0.893343e-1, (1, 2) = 0.875645e-2, (1, 3) = -.878185, (1, 4) = 0.535149e-1, (1, 5) = -3.71351, (1, 6) = .145236, (1, 7) = -8.74318, (1, 8) = .224455, (1, 9) = -12.36499, (1, 10) = .206143, (1, 11) = -10.49630, (1, 12) = .104669, (1, 13) = -4.94965, (1, 14) = 0.224740e-1, (2, 1) = -0.864552e-2, (2, 2) = -.115162, (2, 3) = -0.776011e-1, (2, 4) = -1.10141, (2, 5) = -.282396, (2, 6) = -4.51408, (2, 7) = -.537873, (2, 8) = -10.26209, (2, 9) = -.568850, (2, 10) = -13.97156, (2, 11) = -.318088, (2, 12) = -11.39493, (2, 13) = -0.737097e-1, (2, 14) = -5.15750})

(14)

M3 := Matrix(S*dmax, S*dmax, [Matrix(S*(dmax-1), S), Matrix(S*(dmax-1), shape = identity), lowerband])

Error, (in Matrix) this entry is too tall or too short: Matrix(2, 14, {(1, 1) = -0.8933432215e-1, (1, 2) = 0.8756453086e-2, (1, 3) = -.8781848755, (1, 4) = 0.5351488825e-1, (1, 5) = -3.713506389, (1, 6) = .1452358276, (1, 7) = -8.743183575, (1, 8) = .224454831, (1, 9) = -12.36498974, (1, 10) = .2061431666, (1, 11) = -10.49629552, (1, 12) = .1046685287, (1, 13) = -4.949652167, (1, 14) = 0.2247395242e-1, (2, 1) = -0.8645515381e-2, (2, 2) = -.1151624586, (2, 3) = -0.7760109089e-1, (2, 4) = -1.101411529, (2, 5) = -.2823958356, (2, 6) = -4.514076892, (2, 7) = -.537872817, (2, 8) = -10.26209174, (2, 9) = -.5688498906, (2, 10) = -13.97155838, (2, 1...

 

``


Download Test_Block_matrix.mw


Dear all,

I wold like to find the solution of the next system of two equations with three unknowns but we assume that the unknows are positive integers. How the following code can work. Many thanks

 

 

 

> restart;
> assume(J, integer, J >= 0);
> assume(A, integer, A >= 0);
> assume(T, integer, T >= 0);
> eq1 := J+10*A+50*T=500;
   eq2 := J+A+T = 100;
  solve( {eq1,eq2},{J,A,T});

First 1123 1124 1125 1126 1127 1128 1129 Last Page 1125 of 2434